РАСТВОР ДЛЯ ФОРМОВАНИЯ УЛЬТРАТОНКИХ ПОЛИМЕРНЫХ ВОЛОКОН Российский патент 1996 года по МПК D01F6/18 

Описание патента на изобретение RU2065513C1

Изобретение относится к растворам для формования ультратонких полимерных волокон электродинамическим (электростатическим) методом диаметром от 0,1 мкм до 5-7 мкм, из которых формируют нетканые волоконно-пористые материалы, применяемые в качестве разделительных перегородок, например, для фильтрации газов и жидкостей, для изготовления диффузионных перегородок, сепараторов химических источников тока и т.п.

Известен электродинамический (электростатический) метод получения ультратонких волокон из растворов волокнообразующих полимеров [1]
В отличие от традиционного, фильерного способа формирования сухим методом полимерных волокон, электродинамический (электростатический) способ состоит в том, что движущей силой процесса вытягивания жидкой струйки прядильного раствора в ультратонкое волокно являются электрические силы, возникающие между заряженной струйкой прядильного раствора, электрически соединенного источником высоковольтного напряжения, и заземленной осадительной (приемной) поверхностью.

Электрически заряженный прядильный раствор полимера, с определенной объемной скоростью, вытекающей из дозирующего капилляра в виде струйки, ускоренно вытягивается в сторону заземленной соединительной поверхности, образуя тонкую нить, которая за время пребывания в межэлектродном промежутке, освобождается от растворителя и превращается в твердое непрерывное волокно. Заряженное волокно равномерным слоем осаждается на осадительной приемной заземленной поверхности, образуя однородный слой волокнистого нетканого материала, который в дальнейшем удаляется с этой осадительной поверхности.

Осадительная заземленная поверхность может быть выполнена в виде непрерывной движущейся транспортерной ленты или в виде вращающихся подвижных барабанов, что позволяет получать нетканый волокнисто-пористый материал либо в виду рулона, либо в виде отдельных полотен, размеры которых определяются габаритными размерами ленты или барабанов.

Разновидностями электродинамического способа формования ультратонких полимерных волокон являются его модификации, когда с целью стабилизации процесса электродинамического формования и с целью предотвращения подсыхания прядильного раствора на конце дозирующего капилляра, капилляр обдувается скоростным потоком сухого воздуха или парами растворителя, что не меняет физического существа процесса, когда электрические заряды на струйке прядильного раствора выполняют основную функцию силы вытягивания ее в ультратонкое волокно и равномерного распределения волокон на осадительной приемной поверхности.

В качестве прядильных растворов, которые используют в электрогидродинамическом способе формования ультратонких волокон используют вязкие растворы волокнообразующих полимеров в органическом растворителе. Известен состав прядильного раствора, который состоит только из волокнообразующего полимера и его растворителя, например, 14% -ный мас. раствор ацетата целлюлозы в ацетоне [2] Известен также прядильный раствор, в котором волокнообразующий полимер растворен в более сложном по составу растворителе, например, 14,3% масс. раствор ацетата целлюлозы в составном растворителе из смеси 66% ацетона и 34% моноэтилового эфира этиленгликоля [1]
Наиболее близким по технической сущности к изобретению является прядильный состав, состоящий из смеси двух волокнообразующих полимеров в органическом растворителе, а именно, 7 20% масс. раствор акрилонитрила с добавкой 6% метилакрилата в диметилформамиде [3] каждый из которых в отдельности в диметилформамиде образует прядильные растворы, из которых формуют волокна только из акрилонитрила и только из метакрилата.

Технической задачей, на решение которой направлено данное изобретение, является расширение сырьевой базы за счет применения полимеров, которые ранее не использовались в технологии получения ультратонких химических волокон.

Техническая задача достигается тем, что прядильный раствор для формования ультратонких полимерных волокон содержит смесь неволокнообразующих полимеров фенолформальдегидную смолу и поливинилбутираль, а в качестве органического растворителя содержит этиловый спирт или дихлорэтан, при следующем соотношении компонентов, мас.

фенолформальдегидная смола 3-21
поливинилбутираль 3-7
органический растворитель (спирт этиловый или дихлорэтан) остальное до 100%
В качестве растворителя для указанного состава полимеров возможно применение смеси этилового спирта и дихлорэтана, при следующем соотношении компонентов, масс.

этиловый спирт 5-95
дихлорэтан остальное до 100%
Практическую реализацию предложенного изобретения раскрывают приведенные ниже примеры выполнения изобретения в опытно-промышленном масштабе.

Пример 1.

Раствор, содержащий 12% масс. фенолформальдегидной смолы и 88% этилового спирта, был использован на полупромышленной установке, содержащей гребенку из 10 прядильных капилляров, установленных на расстоянии 40 см от поверхности осадительного заземленного электрода в виде вращающегося вокруг своей оси металлического барабана. Через дозирующие капилляры устанавливалась объемная скорость истечения раствора полимера 0,2 см3/мин. При подаче высоковольтного потенциала 60 кВ на гребенку, соединенную электрически с раствором полимера, из капилляров вытягивались заряженные струйки, которые, однако, распадались на отдельные капли раствора и осаждались на поверхности барабана в виде слоя из слабоскрепленного порошка, не образуя слоя из волокон.

Не были получены волокна из растворов фенолформальдегидной смолы, содержащие полимер в концентрации 3 и 21% как в этиловом спирте, так и в дихлорэтане, при различных подачах раствора через капилляр в интервале от 0,05 до 1,5 см3/мин.

Пример 2.

На установке, как и в примере 1, использовался раствор, содержащий 4% поливинилбутираля и 96% этилового спирта. Через прядильные дозирующие капилляры устанавливалась объемная скорость истечения раствора полимера 0,3 см3/мин. При подаче высоковольтного потенциала 60 кВ на прядильную гребенку из капилляров вытягивались струйки заряженного раствора, которые не образовывали сухих волокон и осаждались на поверхности осадительного барабана в виде газонепроницаемой пленки. Из-за подсыхания раствора на кончиках капилляров истечение раствора прекращалось через 5-7 минут после подачи высоковольтного потенциала.

Пример 3.

На установке, как и в примере 1, с целью устранения подсыхания раствора на капиллярах, последние обдувались паровоздушной смесью этилового спирта с объемным расходом 2 м3/мин. Получить сухое волокно поливинилбутираля, несмотря на устранение подсыхания раствора, на концах капилляров, не удалось.

Не были получены волокна из растворов поливинилбутираля, содержащие полимер в концентрации 3 и 7% как в этиловом спирте, так и в дихлорэтане, при различных подачах раствора через капилляр в интервале от 0,5 до 2,0 см3/мин.

Пример 4.

На установке, как и в примерах 1 и 2, использовался прядильный раствор, содержащий 3% масс. феноформальдегидной смолы, 3% поливинилбутираля и 94% этилового спирта. Устанавливалась объемная скорость истечения, раствора полимера 0,3 см3/мин. При подаче высоковольтного потенциала 60 кВ на прядильную гребенку из капилляров вытягивались заряженные струйки раствора, которые в виде сухого волокна диаметром около 0,7 мкм осаждались, равномерным слоем на поверхности осадительного заземленного барабана. За время непрерывной работы установки в течение 40 минут на поверхности барабана был сформирован равномерный слой нетканого материала в виде рыхлого пористого холстика из ультратонких волокон.

При использовании раствора, содержащего меньшее количество одного из полимеров, в этих же условиях наряду с сухими волокнами на поверхность барабана осаждались и капли раствора, что указывает на нарушение стабильности процесса.

Пример 5.

На установке, как и в примерах 1 и 2, использовался прядильный раствор, содержащий 12% фенолформальдегидной смолы, 7% поливинилбутираля и 82% дихлорэтана. При подаче высоковольтного потенциала 80 кВ на прядильную гребенку, из капилляров вытягивались заряженные струйки раствора, которые в виде сухого волокна диаметром около 2,5 мкм осаждались равномерным слоем на поверхности заземленного барабана. За время непрерывной работы установки в течение 40 минут на поверхности барабана был сформирован равномерный слой нетканого материала в виде рыхлого пористого холстика из ультратонких волокон.

При приготовлении раствора, содержащего большее количество поливинилбутираля, получить гомогенные растворы в спирте, дихлорэтане или их смеси не удалось.

Пример 6.

На установке, как и в примерах 1 и 2, использовался прядильный раствор, содержащий 21% фенолформальдегидной смолы, 7% поливинилбутираля и 12% этилового спирта. Одновременно с подачей на гребенку высоковольтного потенциала, при установившейся объемной скорости истечения раствора через капилляры около 0,5 см3/мин, капилляры обдувались потоком сухого воздуха с объемной скоростью около 2 м3/мин. За время непрерывной работы установки в этих условиях был сформирован равномерный слой нетканого материала из ультратонких волокон диаметром от 0,5 до 2,5 мкм в виде рыхлого пористого холстика.

Пример 7.

На установке, как и в примерах 1 и 2, использовался прядильный раствор, содержащий 6% фенолформальдегидной смолы, 6% поливинилбутираля в составном растворителе, состоящем из 40% этилового спирта и 60% дихлорэтана. При подаче высоковольтного потенциала 70 кВ на прядильную гребенку, из капилляров вытягивались заряженные струйки раствора, которые при объемной скорости раствора около 0,3 см3/мин, в виде сухого волокна диаметром около 1,5 мкм осаждались равномерным слоем на поверхности осадительного заземленного барабана. За время непрерывной работы установки в течение 40 минут на поверхности барабана был сформирован равномерный слой нетканого материала в виде рыхлого пористого холстика из ультратонких волокон.

Похожие патенты RU2065513C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ УЛЬТРАТОНКИХ ПОЛИМЕРНЫХ ВОЛОКОН 2012
  • Симонов-Емельянов Игорь Дмитриевич
  • Филатов Юрий Николаевич
  • Петров Андрей Валерьевич
RU2527097C2
СПОСОБ ПОЛУЧЕНИЯ НЕТКАНОГО ВОЛОКНИСТО-ПОРИСТОГО МАТЕРИАЛА 1997
  • Полевов В.Н.
  • Васильев Ю.Н.
  • Мифтахутдинов С.Г.
  • Кириченко В.Н.
RU2111300C1
СПОСОБ ПОЛУЧЕНИЯ ФИЛЬТРУЮЩЕГО МАТЕРИАЛА ИЗ ПОЛИМЕРНЫХ ВОЛОКОН БЕЗ ТКАНЕВЫХ ПОДЛОЖЕК 2013
  • Дружинин Эрнест Августинович
RU2606222C2
Способ получения ультратонких полимерных волокон 1990
  • Юров Юрий Львович
  • Кириченко Валентин Николаевич
  • Полевов Вячеслав Николаевич
  • Рыкунов Владимир Аркадьевич
  • Дружинин Эрнест Августинович
  • Ефимов Игорь Михайлович
  • Голомуз Игорь Николаевич
SU1815280A1
СПОСОБ НАНЕСЕНИЯ ЗАЩИТНОГО АСЕПТИЧЕСКОГО ПОКРЫТИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1992
  • Полевов В.Н.
  • Кириченко В.Н.
  • Усачев А.Л.
RU2034534C1
Состав раствора для получения фильтрующего материала для тонкой очистки масел и топлив 2020
  • Смульская Мария Анатольевна
  • Филатов Иван Юрьевич
  • Капустин Иван Александрович
RU2784246C2
Фильтрующий материал для тонкой очистки масел и топлив, способ его получения и применение 2019
  • Смульская Мария Анатольевна
  • Филатов Иван Юрьевич
  • Капустин Иван Александрович
RU2732273C1
СПОСОБ ПОЛУЧЕНИЯ ФИЛЬТРУЮЩЕГО ПОЛИМЕРНОГО МАТЕРИАЛА И ФИЛЬТРУЮЩИЙ МАТЕРИАЛ 2011
  • Мамагулашвили Виссарион Георгиевич
  • Негин Андрей Евгеньевич
  • Луканина Ксения Игоревна
  • Шепелев Алексей Дмитриевич
  • Голуб Юрий Михайлович
  • Ворожцов Георгий Николаевич
  • Калия Олег Леонидович
RU2492912C2
СПОСОБ ПОЛУЧЕНИЯ ФИЛЬТРУЮЩЕГО МАТЕРИАЛА И ФИЛЬТРУЮЩИЙ ВОЛОКНИСТЫЙ МАТЕРИАЛ 2004
  • Брук Лев Григорьевич
  • Будыка Александр Константинович
  • Буланов Геннадий Анатольевич
  • Ворожцов Георгий Николаевич
  • Голуб Юрий Михайлович
  • Калия Олег Леонидович
  • Куликов Николай Константинович
  • Лужков Юрий Михайлович
  • Мамагулашвили Виссарион Георгиевич
  • Ошанина Ирина Валерьевна
  • Темкин Олег Наумович
  • Филатов Юрий Николаевич
  • Шеляпин Игорь Павлович
  • Шепелев Алексей Дмитриевич
RU2267347C1
УСТРОЙСТВО ДЛЯ ФОРМОВАНИЯ ВОЛОКНИСТЫХ МАТЕРИАЛОВ 1991
  • Мещеряков О.Л.
  • Тамазина В.Н.
  • Немокаев В.А.
  • Сахацкий В.С.
  • Бобров А.Р.
  • Корепанов С.А.
  • Сагайдак О.Л.
RU2026905C1

Реферат патента 1996 года РАСТВОР ДЛЯ ФОРМОВАНИЯ УЛЬТРАТОНКИХ ПОЛИМЕРНЫХ ВОЛОКОН

Использование: формование ультратонких полимерных волокон. Сущность изобретения: для получения волокон электродинамическим методом используют раствор, содержащий фенолформальдегидную смолу 3-21 мас.%, поливинилбутираль 3-7 мас.%, этиловый спирт или дихлорэтан или их смесь в соотношении 3,6-89: 3,6-89 - остальное.

Формула изобретения RU 2 065 513 C1

Раствор для формования ультратонких полимерных волокон электродинамическим методом, содержащий два полимера и органический растворитель, отличающийся тем, что в качестве полимеров он содержит неволокнообразующие фенолформальдегидную смолу и поливинилбутираль, а в качестве органического растворителя этиловый спирт и/или дихлорэтан при следующем соотношении компонентов, мас.

Фенолформальдегидная смола 3-21
Поливинилбутираль 3-7
Этиловый спирт, или дихлорэтан, или их смесь в соотношении 3,6 89 3,6 89 Остальное

Документы, цитированные в отчете о поиске Патент 1996 года RU2065513C1

СПОСОБ И УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ОБЪЕМОВ ЗЕМЛЯНЫХ СООРУЖЕНИЙ 1999
  • Вдовин В.С.
  • Ефремов Н.А.
  • Капилевич Д.И.
  • Макаров А.В.
  • Мельников И.Т.
  • Цернант А.А.
RU2158415C1
Железнодорожный снегоочиститель 1920
  • Воскресенский М.
SU264A1
МЕЖРОТОРНАЯ ОПОРА ГАЗОТУРБИННОГО ДВИГАТЕЛЯ 2004
  • Зенкова Л.Ф.
  • Кикоть Н.В.
  • Колобов Г.И.
  • Марчуков Е.Ю.
RU2265742C1
Железнодорожный снегоочиститель 1920
  • Воскресенский М.
SU264A1
К.Е
Перепелкин
Физико-химические основы процессов формования химических волокон, М., Химия, 1978, с
ДИФФЕРЕНЦИАЛЬНАЯ ТЕРМИОННАЯ ЛАМПА 1920
  • Данилевский А.И.
SU294A1

RU 2 065 513 C1

Авторы

Кириченко В.Н.

Дружинин Э.А.

Полевов В.Н.

Шепелев А.Д.

Рыкунов В.А.

Карасик А.Д.

Кириченко М.Н.

Даты

1996-08-20Публикация

1993-08-31Подача