ТЕРМОМЕТР СОПРОТИВЛЕНИЯ Российский патент 1996 года по МПК G01K7/16 

Описание патента на изобретение RU2069324C1

Изобретение относится к термометрии, а именно к датчикам температуры на основе пленок металлов, и предназначено для измерения температуры, а также в качестве чувствительного элемента в различных объектах техники, где требуется низкая тепловая инерционность датчика и стабильность его ТКС в широком диапазоне температур эксплуатации.

Известен термометр сопротивления (ТС) для осуществления контроля или управления нагревом продуктов питания в специальных бытовых устройствах, содержащий диэлектрическую основу, на которую намотана проволока, являющаяся собственно чувствительным элементом, из сплава, состоящего из 70% никеля и 30% железа [1] Недостатками подобных ТС являются большие размеры и высокая инерционность работы.

Наиболее близким к изобретению по технической сущности является ТС для измерения температуры жидкой среды, содержащий керамическую подложку с содержанием примесей 0,3 0,5 мас. и термочувствительный элемент из никеля толщиной , выполненный в виде меандра, и адгезионный слой никель-хрома толщиной , сформированный между ними [2]
Недостатком ТС [2] является использование в его конструкции в качестве адгезионного слоя никель-хрома, из-за чего в процессе изготовления ТС приходится проводить многостадийный процесс, включающий две раздельных операции термообработки. Завершающий отжиг, который осуществляют с целью стабилизации микроструктуры и химического состава пленки и повышения временной стабилизации терморезистора проводят в [2] при сравнительно низкой температуре (не выше 255oC), но в течение длительного (порядка 2-х суток) времени. Ускорить процесс искусственного "старения" пленки Ni за счет повышения температуры отжига в [2] не представляется возможным, т.к. при более высоких температурах усиливается нежелательная диффузия посторонних атомов (Cr) из адгезионного слоя (NiCr) в пленку термочувствительного слоя (Ni), что может привести к снижению величины ТКС резистора. Эти же причины ограничивают и температурный диапазон эксплуатации ТС [2]
Техническим результатом, создаваемым изобретением, является повышение термостабильности термометра сопротивления.

Указанный результат достигается тем, что ТС содержит диэлектрическую подложку и термочувствительный тонкопленочный элемент в виде меандра из металла, обладающего высоким температурным коэффициентом сопротивления, и адгезионный слой толщиной между ними, который выполнен из нитрида титана TiN.

Нитрид титана является термодинамически устойчивым соединением, пленки которого, сформированные с использованием известных методов осаждения в вакууме, обладают высокой адгезией к диэлектрическим подложкам и являются эффективными диффузионно-барьерными материалами. Применение пленок TiN в ТС позволяет при увеличении температуры стабилизирующего отжига избежать снижения ТКС терморезистора, а за счет более глубокого искусственного "старения" пленки термочувствительного элемента (Ni или Pt) расширить температурно-временной диапазон эксплуатации ТС.

На фиг. 1 показан термометр сопротивления, поперечный разрез, на фиг. 2
конфигурация меандра, сформированного посредством фотолитографии.

Термометр сопротивления (фиг. 1) содержит диэлектрическую подложку 1 (например, из сапфира, ситалла, слюды, поликора, окисленной пластины кремния и др. ), на которую нанесены адгезионный слой 2 из TiN толщиной , термочувствительный слой никеля или платины 3 необходимой толщины в виде меандра. Меандр 4 (фиг. 2) снабжен контактными площадками 5 и шунтами 6 для настройки.

Термометр сопротивления изготавливается следующим образом.

С использованием метода реактивного ионно-плазменного распыления титановой мишени в среде Ar + Nz на диэлектрическую подложку осаждали пленку стехиометрически выдержанного нитрида титана TiN толщиной . Затем наносили пленку Ni или Рt необходимой толщины (порядка 2000 или , соответственно) с R 50 Ом и проводили высокотемпературный отжиг (650oС, 30 мин.) в вакууме или в среде инертного газа. С помощью фотолитографии на подложке 1 формировали топологию термочувствительного элемента в виде меандра 4 и осуществляли его настройку до заданного сопротивления.

На фиг. 3 представлена зависимость температурного коэффициента сопротивления Ni-терморезистора () от толщины адгезионного слоя TiN. Как видно из фиг. 3, величина λ не имеет существенных изменений до толщины TiN слоя . В то же время, как показали эксперименты по оценке адгезии в системе Ni (TiN) подложка, проведенные с использованием методики нормального отрыва, адгезия возрастает от σmin= 3 H/мм2 (пленка Ni на SiO2 без адгезионного слоя TiN/ до σmax= 87 Н/мм2 для TiN толщиной . По результатам испытаний с использованием этой методики оптимальной толщиной адгезионного слоя TiN является .

Исследования термической стабильности проводились в диапазоне температур 300 600oC. В процессе исследований использовались повышенные температуры работы термометра сопротивления, чтобы ускорить его износ. Фиг. 4 показывает зависимость натурального логарифма времени работы никелевого термочувствительного элемента ln(t), за которое параметр сопротивления ΔR изменяется на 0,1% от температуры среды. Экстраполяция прямой до необходимой рабочей температуры позволяет оценить термическую стабильность ТС. Так, время, за которое уход сопротивления от номинала составляет 0,1% при температуре измеряемой среды 200oС будет 605 часов (точка 1 на фиг. 4), при 50oС - 7373 часа (точка 2 на фиг. 4).

Таким образом, предлагаемый термометр сопротивления обладает повышенной термической стабильностью.

Похожие патенты RU2069324C1

название год авторы номер документа
ДАТЧИК ТЕМПЕРАТУРЫ 2002
  • Ажаева Л.А.
  • Клементьев А.Т.
  • Куликова С.В.
  • Сергеева З.Н.
  • Ходжаев В.Д.
RU2222790C2
ДАТЧИК ТЕМПЕРАТУРЫ 1999
  • Ажаева Л.А.
  • Борисовец В.М.
  • Клементьев А.Т.
  • Куликова С.В.
RU2158419C1
ТЕРМОЭЛЕКТРИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ 1994
  • Андреев В.М.
  • Есенков А.П.
  • Зиновьев Д.В.
  • Тузовский К.А.
RU2074429C1
СПОСОБ ИЗГОТОВЛЕНИЯ КОНТАКТОВ ИНТЕГРАЛЬНЫХ МИКРОСХЕМ НА КРЕМНИИ 1992
  • Громов Д.Г.
  • Мочалов А.И.
  • Пугачевич В.П.
  • Хрусталев В.А.
  • Азаров А.А.
RU2034364C1
Первичный преобразователь гигрометра точки росы 1989
  • Небосенко Анатолий Николаевич
  • Небосенко Юрий Анатольевич
  • Репа Федор Михайлович
  • Мироненко Виктор Павлович
  • Харченко Иван Иванович
SU1711057A1
СПОСОБ ИЗГОТОВЛЕНИЯ НАНО- И МИКРОРАЗМЕРНОЙ СИСТЕМЫ ДАТЧИКА ФИЗИЧЕСКИХ ВЕЛИЧИН С ЗАДАННЫМ ПОЛОЖИТЕЛЬНЫМ ТЕМПЕРАТУРНЫМ КОЭФФИЦИЕНТОМ СОПРОТИВЛЕНИЯ РЕЗИСТИВНЫХ ЭЛЕМЕНТОВ 2014
  • Васильев Валерий Анатольевич
  • Хошев Александр Вячеславович
RU2554083C1
ТЕРМОМЕТР СОПРОТИВЛЕНИЯ 2012
  • Логинова Светлана Владимировна
  • Москалева Наталия Николаевна
  • Резчикова Инесса Игоревна
  • Тимофеев Борис Васильевич
RU2513654C2
Способ изготовления тонкопленочного резистора 2018
  • Новожилов Валерий Николаевич
RU2700592C1
ТОНКОПЛЕНОЧНЫЙ ТЕРМОРЕЗИСТОР 1995
  • Власов Г.С.
  • Лугин А.Н.
  • Проскурин Л.С.
  • Шутенко С.В.
RU2120679C1
МИКРОНАГРЕВАТЕЛЬ 1998
  • Андреев В.М.
  • Зиновьев Д.В.
  • Тузовский К.А.
RU2170992C2

Иллюстрации к изобретению RU 2 069 324 C1

Реферат патента 1996 года ТЕРМОМЕТР СОПРОТИВЛЕНИЯ

Сущность изобретения: на диэлектрическую подложку последовательно нанесены адгезионный слой толщиной из нитрида титана и термочувствительный тонкопленочный элемент из металла с высоким ТКС. Термометр сопротивления обладает высокой термической стабильностью в процессе эксплуатации при повышенных температурах, а также хорошей линейностью выходной характеристики. 4 ил.

Формула изобретения RU 2 069 324 C1

Термометр сопротивления, содержащий диэлектрическую подложку, термочувствительный тонкопленочный элемент в виде меандра из металла с высоким температурным коэффициентом сопротивления и адгезионный слой, расположенный между ними, отличающийся тем, что адгезионный слой толщиной выполнен из нитрида титана.

Документы, цитированные в отчете о поиске Патент 1996 года RU2069324C1

Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
УСТРОЙСТВО ДЛЯ СЖИГАНИЯ ОРГАНИЧЕСКИХ ВЕЩЕСТВ 2007
  • Фреллер Вальтер
RU2393385C2
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
Термометр сопротивления для измерения температуры жидкой среды и способ его изготовления 1984
  • Стойчо Минчев Стойчев
  • Марина Иванова Аройо
  • Марин Стоянов Стоянов
  • Александр Цонев Иванов
SU1636699A1
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1

RU 2 069 324 C1

Авторы

Громов Д.Г.

Мочалов А.И.

Нефедов Ю.П.

Пугачевич В.П.

Даты

1996-11-20Публикация

1993-07-15Подача