СОПОЛИМЕРЫ ЭФИРОВ МЕТАКРИЛОВОЙ КИСЛОТЫ В КАЧЕСТВЕ ПЛЕНКООБРАЗУЮЩИХ КОМПОНЕНТОВ СВЯЗУЮЩИХ И ПОКРЫТИЙ Российский патент 1996 года по МПК C08F220/18 

Описание патента на изобретение RU2069667C1

Изобретение относится к новым сополимерам эфиров метакриловой кислоты, а именно к сополимерам общей формулы

где R1 (C1-C8)алкил,
R2 (C1-C3)алкил,
n 20-80 мас.

m 80-20 мас.

с молекулярной массой (ММ) от 40000 до 250000, которые могут найти применение в качестве пленкообразующих компонентов связующих и покрытий. В частности, заявляемые сополимеры могут найти применение при изготовлении противообрастающих покрытий для днищ морских судов, так как при том, что эти сополимеры нерастворимы в воде, они обладают регулируемой способностью к набуханию и гидролизу. Заявляемые сополимеры в литературе не описаны.

Известны [1] нерастворимые в воде сополимеры общей формулы

где В виниловый мономер, например, метилметакрилат бутилметакрилат,
Х Н или СН3,
R азот-, галоген-, кремний- или фосфорсодержащие алкилы, например, второй блок представляет собой п-нитрофенилакрилат, диметиламиноэтилметакрилат, фосфиноэтилакрилат, трифторэтилакрилат, трис-(4-метил-2-пентокси)силилакрилат и т.п.

n 15-70 мас.

Синтез сополимеров [1] ведут в растворе в высококипящих углеводородах или ксилоле в присутствии пероксидных инициаторов. Сополимеры [1] используют в красках для днищ кораблей, предотвращающих обрастание водорослями и микроорганизмами. В [1] указывается, что сополимер в толще нерастворим, но в контакте с морской водой гидролизуется на поверхности покрытия, медленно трансформируясь в растворимую или набухающую в воде форму. Вследствие этого поверхностный слой подвергается эрозии, высвобождая из слоя покрытия физически связанное вещество, предотвращающее обрастание, например оксид цинка или меди.

Однако используемые в синтезе сополимеры [1] азот-, галоген-, кремний- или фосфорзамещенные акрилаты не выпускаются промышленностью, а при организации производства эти вещества более дороги, чем не содержащие указанных атомов эфиры акриловой и метакриловой кислот.

Также известны [2] сополимеры метилметакрилата и водорастворимого акрилата общей формулы

где В метилметакрилат,
А водорастворимый акрилат общей формулы
CH2 C(R1)COOCpH2pCOOH,
где R1 Н или алкил,
p 2-6,
n 20-97 мас.

m 3-80 мас.

ММ 3000-2000000.

Растворимость этих сополимеров в воде определяется соотношением компонентов. Сополимеры [2] также используются в качестве пленкообразующих компонентов противообрастающих красок и для пропитки сетей против обрастания.

Синтез сополимеров [2] проводят в органическом растворителе, смешивающемся с водой, в частности в метаноле, в присутствии органического пероксида. Полученные сополимеры нейтрализуют гидроксидом натрия или оксидом меди и используют в виде раствора в метаноле.

Повышенная растворимость в воде сополимеров [2] обусловленная наличием в цепи блока поликарбоновой кислоты, делает их малорентабельными при использовании в качестве компонентов противообрастающих красок, так как покрытие нужно возобновлять чаще, чем покрытия из обычно используемых не растворяющихся в толще полимеров.

Целью предлагаемого изобретения является синтез более доступных и дешевых нерастворимых в воде пленкообразующих сополимеров эфиров метакриловой кислоты с регулируемой способностью к набуханию и гидролизу.

Для достижения указанной цели нами синтезированы сополимеры эфиров метакриловой кислоты общей формулы

где R1 (C1-C8)алкил,
R2 (C1-C3)алкил,
n 20-80 мас.

m 80-20 мас.

с ММ 40000-250000,
пригодные для использования в качестве пленкообразующего компонента связующих и покрытий.

В качестве мономеров для синтеза сополимеров могут быть использованы, например, метилметакрилат (ММА) (C1-алкил), бутилметакрилат (БМА) - (C4-алкил), октилметакрилат (ОМА) (C8-алкил), карбметоксиметилметакрилат (КМММА) (C1-алкил), карбэтоксиметилметакрилат (КЭММА) (C2-алкил), карбпропоксиметилметакрилат (КПММА) (С3-алкил) и др.

Сополимеризацию проводят в растворе при температуре 60-90oС в присутствии регуляторов роста цепи и инициаторов полимеризации.

В качестве растворителя используют толуол, ксилол, бензол, метилацетат, этилацетат или их смеси, лучше толуол или ксилол, так как в этом случае раствор полученного сополимера можно без дальнейшей обработки использовать для производства противообрастающих красок.

В качестве регулятора роста цепи используют нормальный или третичный додецилмеркаптан в количестве 0,3-0,7% от массы мономеров.

В качестве инициатора полимеризации используют радикалообразующие инициаторы, работоспособные в интервале температур 60-90oС, лучше бензоилпероксид в количестве 0,45-0,55% от массы мономеров.

Пример 1.

В стеклянную ампулу объемом 200 мл загружают 31,6 г (55 мас.) карбметоксиметилметакрилата, 25,9 г (45 мас.) бутилметакрилата, 57,5 г толуола, 0,3 г пероксида бензоила, 0,25 г нормального додецилмеркаптана, содержимое ампулы продувают аргоном, ампулу запаивают и термостатируют содержимое ампулы при температуре 70oС в течение 50 ч, далее поднимают температуру до 80oС и проводят дополимеризацию в течение 10 ч. Получают лак сополимера бутилметакрилата с карбметоксиметилметакрилатом с содержанием остаточных мономеров менее 0,5 мас. (по результатам газохроматографического анализа), массовая доля нелетучих веществ 49,75 мас. вязкость лака по ВЗ-4 составляет 60 с. Молекулярная масса сополимера 145000 (по данным вискозиметрического анализа), температура стеклования 35,7oС, скорость гидролиза в воде при комнатной температуре 2,1х10-9 моль/с (по данным титриметрического анализа по гидролизуемому сомономеру), степень набухания (24 ч, комнатная температура) 0,78 мас. Полученный лак сополимера без дальнейшей обработки можно использовать для производства противообрастающих красок.

Пример 2.

В ампулу загружают 39,5 г (70 мас.) карбметоксиметилметакрилата, 16,9 г (30 мас.) бутилметакрилата, 68,9 г толуола, 0,28 г пероксида бензоила, 0,25 г нормального додецилмеркаптана, проводят сополимеризацию 20 ч при 60oС, 40 ч при 70oС, 10 ч при 80oС. Получают лак сополимера бутилметакрилата с карбметоксиметилметакрилатом с содержанием остаточных мономеров менее 0,5 мас. массовая доля нелетучих веществ 44,8 мас. вязкость по ВЗ-4 составляет 100 с. Молекулярная масса сополимера 200000, температура стеклования 43,0oС, скорость гидролиза в воде при комнатной температуре 3,9х10-9 моль/с, степень набухания (24 ч, комнатная температура) 0,91 мас.

Пример 3.

В ампулу загружают 31,6 г (61,2 мас.) карбметоксиметилметакрилата, 20 г (38,8 мас.) метилметакрилата, 63,1 г ксилола, 0,25 г пероксида бензоила, 0,2 г нормального додецилмеркаптана, проводят сополимеризацию 50 ч при 70oС, 10 ч при 80oС. Получают лак сополимера метилметакрилата с карбметоксиметилметакрилатом с содержанием остаточных мономеров менее 0,5 мас. массовая доля нелетучих веществ 44,5 мас. вязкость по ВЗ-4 составляет 120 с. Молекулярная масса сополимера 2500000, температура стеклования 82,6oС, скорость гидролиза в воде при комнатной температуре 1,9x10-9 моль/с, степень набухания (24 ч, комнатная температура) 0,79 мас.

Пример 4.

В ампулу загружают 31,6 г (47 мас.) карбметоксиметилметакрилата, 35,6 г (53 мас.) октилметакрилата, 67,2 г ксилола, 0,33 г пероксида бензоила, 0,3 г третичного додецилмеркаптана, проводят сополимеризацию при 70oС в течение 50 ч, при 80oС в течение 10 ч, при 90oС в течение 5 ч. Получают лак сополимера октилметакрилата с карбметоксиметилметакрилатом с содержанием остаточных мономеров менее 0,5 мас. массовая доля нелетучих веществ 49,5 мас. вязкость по ВЗ-4 составляет 110 с. Молекулярная масса сополимера 150000, температура стеклования 71,3oС, скорость гидролиза в воде при комнатной температуре 2,0x10-9 моль/с, степень набухания (24 ч, комнатная температура) 0,71 мас.

Пример 5.

В ампулу загружают 34,4 г (54,8 мас.) карбэтоксиметилметакрилата, 28,4 г (45,2 мас.) бутилметакрилата, 62,8 г толуола, 0,3 г пероксида бензоила, 0,2 г третичного додецилмеркаптана, проводят сополимеризацию в течение 40 ч при 70oС, в течение 20 ч при 80oС. Получают лак сополимера бутилметакрилата с карбэтоксиметилметакрилатом с содержанием остаточных мономеров менее 0,5 мас. массовая доля нелетучих веществ 49,75 мас. вязкость по ВЗ-4 составляет 80 с. Молекулярная масса сополимера 140000, температура стеклования 34,5oС, скорость гидролиза в воде при комнатной температуре 1,0x19-9 моль/с, степень набухания (24 ч, комнатная температура) 0,68 мас.

Пример 6.

В ампулу загружают 37,2 г (56,7 мас.) карбпропоксиметилметакрилата, 28,4 г (43,3 мас.) бутилметакрилата, 65,6 г толуола, 0,3 г пероксида бензоила, 0,2 г третичного додецилмеркаптана, проводят сополимеризацию при 60oС в течение 50 ч, при 70oС в течение 10 ч, при 80oС в течение 10 ч. Получают лак сополимера бутилметакрилата с карбпропоксиметилметакрилатом с содержанием остаточных мономеров менее 0,5 мас. массовая доля нелетучих веществ 49,65 мас. вязкость по ВЗ-4 составляет 95 с. Молекулярная масса сополимера 170000, температура стеклования 32,9oС, скорость гидролиза в воде при комнатной температуре 0,6x10-9 моль/с, степень набухания (24 ч, комнатная температура) 0,70 мас.

Пример 7.

В ампулу загружают 51,6 г (80 мас.) карбэтоксиметилметакрилата, 12,9 г (20 мас.) бутилметакрилата, 64,5 г ксилола, 0,3 г пероксида бензоила, 0,25 г третичного додецилмеркаптана, проводят сополимеризацию при 70oС в течение 45 ч, при 80oС в течение 20 ч. Получают лак сополимера бутилметакрилата с карбэтоксиметилметакрилатом с содержанием остаточных мономеров менее 0,5 мас. массовая доля нелетучих веществ 49,5 мас. вязкость по ВЗ-4 составляет 80 с. Молекулярная масса сополимера 110000, температура стеклования 45,7oС, скорость гидролиза в воде при комнатной температуре 2,1x10-9 моль/с, степень набухания (24 ч, комнатная температура) 0,85 мас.

Пример 8.

В ампулу загружают 10,7 г (20 мас.) карбметоксиметилметакрилата, 42,6 г (80 мас.) бутилметакрилата, 53,3 г ксилола, 0,25 г пероксида бензоила, 0,2 г нормального додецилмеркаптана, проводят сополимеризацию при 70oС в течение 50 ч, при 80oС в течение 10 ч. Получают лак сополимера бутилметакрилата с карбметоксиметилметакрилатом с содержанием остаточных мономеров менее 0,5 мас. массовая доля нелетучих веществ 49,7 мас. вязкость по ВЗ-4 составляет 80 с. Молекулярная масса сополимера 100000, температура стеклования 25,6oС, скорость гидролиза в воде при комнатной температуре 1,1x10-9 моль/с, степень набухания (24 ч, комнатная температура) 0,47 мас.

Пример 9.

В ампулу загружают 31,6 г (55 мас.) карбметоксиметилметакрилата, 25,9 г (45 мас.) бутилметакрилата, 57,5 г ксилола, 0,3 г пероксида бензоила, 0,4 г нормального додецилмеркаптана, проводят сополимеризацию при 70oС в течение 50 ч, при 80oС в течение 10 ч. Получают лак сополимера бутилметакрилата с карбметоксиметилметакрилатом с содержанием остаточных мономеров менее 0,5 мас. массовая доля нелетучих веществ 49,4 мас. вязкость по ВЗ-4 составляет 35 с. Молекулярная масса сополимера 40000, температура стеклования 35,2oС, скорость гидролиза в воде при комнатной температуре 2,2x10-9 моль/с, степень набухания (24 ч, комнатная температура) 0,78 мас.

Как видно из примеров и таблицы, сополимеры способны к набуханию и гидролизу, вследствие чего поверхностный слой покрытия способен к эрозии и высвобождению биоцида. Из таблицы также видно, что способность к набуханию и гидролизу сополимеров можно регулировать как соотношением сомономеров в сополимере, так и использованием сомономеров с различной длиной боковой цепи (с различным значением R1 и R2). При этом скорость гидролиза такова, что обеспечит обновление поверхности покрытия (эффективность действия биоцида) при достаточном сроке службы самого покрытия.

Похожие патенты RU2069667C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ НИЗКООСНОВНЫХ АНИОНИТОВ 1995
  • Ледовских Г.И.
  • Сеньков В.А.
  • Балашова Г.Л.
  • Козлов О.Д.
RU2080338C1
СПОСОБ ПОЛУЧЕНИЯ АКРИЛОНИТРИЛБУТАДИЕНСТИРОЛЬНЫХ СОПОЛИМЕРОВ 1999
  • Рупышев В.Г.
  • Клепцова Л.Г.
  • Барболина Л.М.
  • Иванова Т.Л.
  • Шпитальник Ф.П.
  • Григоров И.В.
  • Голубцева Р.И.
RU2160286C1
СОСТАВ ДЛЯ ЗАЩИТЫ ПОВЕРХНОСТЕЙ МЕТАЛЛИЧЕСКИХ ИЗДЕЛИЙ ПРИ ЛОКАЛЬНОЙ ОБРАБОТКЕ 1998
  • Фляте А.Д.
  • Юрецкая Г.И.
RU2160794C2
СПОСОБ ПОЛУЧЕНИЯ СОПОЛИМЕРОВ ВИНИЛИДЕНФТОРИДА С ТЕТРАФТОРЭТИЛЕНОМ 1998
  • Логинова Н.Н.
  • Мадорская Л.Я.
  • Захаров П.С.
  • Денисов А.К.
  • Дедов А.С.
  • Захаров В.Ю.
  • Масляков А.И.
  • Капустин И.М.
  • Насонов Ю.Б.
RU2139891C1
СПОСОБ ПОЛУЧЕНИЯ ПОЛИОРГАНОСИЛОКСАНОВОГО ЛАКА 1995
  • Матвеев Л.Г.
  • Варакосов В.С.
  • Шаповал Н.Н.
  • Воробьев Н.И.
RU2108347C1
СПОСОБ ПОЛУЧЕНИЯ СЛАБООСНОВНОЙ АНИОНООБМЕННОЙ МЕМБРАНЫ 1991
  • Скакальская Л.И.
  • Файдель Г.И.
  • Брицина Т.А.
  • Полунина О.П.
RU2041892C1
СПОСОБ ПОЛУЧЕНИЯ ЛАТЕКСА С ПОЛЫМИ ПОЛИМЕРНЫМИ ЧАСТИЦАМИ 1998
  • Павлюченко В.Н.(Ru)
  • Бырдина Н.А.(Ru)
  • Иванчев С.С.(Ru)
  • Скрифварс Микаэл
  • Халме Еркки
  • Лааманен Ханна
  • Коскинен Юкка
RU2128670C1
СПОСОБ ПОЛУЧЕНИЯ СОПОЛИМЕРОВ ВИНИЛИДЕНФТОРИДА С 5-12 МОЛ.% ГЕКСАФТОРПРОПИЛЕНА 1999
  • Логинова Н.Н.
  • Мадорская Л.Я.
  • Захаров П.С.
  • Дедов А.С.
  • Захаров В.Ю.
  • Масляков А.И.
  • Насонов Ю.Б.
  • Капустин И.М.
RU2164922C2
СПОСОБ ПОЛУЧЕНИЯ СОПОЛИМЕРОВ ЭТИЛЕНА С ВИНИЛАЦЕТАТОМ 1998
  • Габутдинов М.С.
  • Юсупов Н.Х.
  • Черевин В.Ф.
  • Зайцев Н.Ф.
  • Ильясов А.Х.
  • Давлетшин Р.Х.
  • Зернов В.С.
  • Кондратьев Ю.Н.
  • Ланчин Ф.В.
  • Штамм С.Б.
  • Южин В.М.
RU2160284C2
СПОСОБ ПОЛУЧЕНИЯ ПОЛИФЕНИЛСИЛОКСАНОВ 1992
  • Клоков Б.А.
  • Душанин Б.М.
  • Тиванов В.Д.
  • Оленева Е.И.
RU2034866C1

Иллюстрации к изобретению RU 2 069 667 C1

Реферат патента 1996 года СОПОЛИМЕРЫ ЭФИРОВ МЕТАКРИЛОВОЙ КИСЛОТЫ В КАЧЕСТВЕ ПЛЕНКООБРАЗУЮЩИХ КОМПОНЕНТОВ СВЯЗУЮЩИХ И ПОКРЫТИЙ

Использование: в качестве пленкообразующих компонентов связующих и покрытий. Сущность изобретения: сополимеры эфиров метакриловой кислоты общей формулы:

где R1 - алкил С1-C8, R2 - алкил C1-C3, n = 20-80 мас.%, m = 80-20 мас.% с молекулярной массой 40000-250000. 1 табл.

Формула изобретения RU 2 069 667 C1

Сополимеры эфиров метакриловой кислоты общей формулы

где R1 C1 C8-алкил;
R2 C1 C3-алкил;
n 20 80 мас.

m 80 20 мас.

с мол. м. 40000 250000 в качестве пленкообразующих компонентов связующих и покрытий.

Документы, цитированные в отчете о поиске Патент 1996 года RU2069667C1

Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Патент США N 4687792, кл
Топка с несколькими решетками для твердого топлива 1918
  • Арбатский И.В.
SU8A1
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
Способ крашения тканей 1922
  • Костин И.Д.
SU62A1
Разборный с внутренней печью кипятильник 1922
  • Петухов Г.Г.
SU9A1

RU 2 069 667 C1

Авторы

Иванчев С.С.

Примаченко О.Н.

Симанович М.Б.

Гончаров П.А.

Агафонов Г.И.

Даты

1996-11-27Публикация

1994-02-08Подача