Изобретение относится к области приборостроения и может быть использовано в легкой, химической и других отраслях промышленности для перемешивания, эмульгирования и гомогенизации жидких и газообразных многокомпонентных систем, а также для диспергирования твердых частиц в жидкости.
Известен кавитационный смеситель для жидкостей и газов, в корпусе которого за камерой смешивания последовательно установлены на общем валу несколько диффузоров в виде конусных тел завихрения с подвнутренней проточкой (см. а.с. N 116201, кл. B O1 F 5/004, 1958).
Однако форма тел завихрения или кавитационных элементов не является оптимальной, как и расстояние, на котором они находятся друг от друга, что снижает эффективность смешения, приводит к дополнительным затратам.
Те же недостатки присущи статическому смесителю последовательного типа с цилиндрическими кавитационными элементами из необожженной керамики (см. ЕПВ N 0195450, кл. B O1 F 5/06, 1986). В этом случае недостаточная эффективность смешивания обусловлена еще и тем, что цилиндрические кавитаторы с осевыми отверстиями не позволяют воздать в корпусе кавитатора каналы сверхзвукового профиля и сформировать пилообразный закон изменения скорости потока, что могло бы способствовать интенсификации процесса смешивания (см. ЕПВ N 0157691, кл. B O1 F 5/04, 1985).
Предпринимались многочисленные попытки повысить эффективность смешивания за счет периодического изменения направления потока. Так, например, в заявке ФРГ N 2022430, кл. B O1 F 5/02, 1972 описано устройство для гомогенизации в виде нескольких камер, соединенных по меньшей мере двумя трубами с односторонней перфорацией, причем каждая из труб находится в двух камерах.
Однако резкое снижение скорости потока приводит к уменьшению производительности подобных устройств и не обеспечивает повышения эффективности смешивания в них.
наиболее близким к предложенному является кавитационный смеситель, в корпусе которого последовательно установлены винтовые перфорированные смесительные элементы, причем отверстия в них выполнены с двухсторонней конусностью, диаметр отверстий составляет 0,1 0,2 внутреннего диаметра корпуса смесителя, а суммарное живое сечение элементов составляет 25 50% последних (см. а.с. N 1625515, кл. B O1 F 5/00, 1987).
Однако проведенные исследования показали, что эффективное смешение компонентов существенным образом зависит и от расстояния между смесительными элементами, что в ряде случаев не обеспечивает в известном устройстве высокую эффективность смешивания. Кроме того, установка идентичных смесительных элементов последовательно и вплотную друг к другу и без зазора с корпусом не позволяет рационально использовать возможности смесителя, поскольку очевидно, что гидродинамические характеристики потока изменяются после прохождения очередного элемента. И, наконец, известный смеситель характеризуется высоким гидравлическим сопротивлением.
Таким образом, техническим результатом, ожидаемым от использования изобретения, является повышение эффективности смешивания компонентов, оптимизация массо-габаритных параметров смесителя при одновременном снижении его гидравлического сопротивления.
На фиг. 1 представлен продольный разрез кавитационного смесителя, а на фиг. 2, 3 примеры разреза по А-А фиг. 1.
Смеситель содержит цилиндрический корпус 1 с входным штуцером 2 и выходным штуцером 3, которые могут быть выполнены как коническими (расширяющимися по мере удаления от корпуса 1), так и цилиндрическими, как это показано на фиг. 1.
В корпусе 1 на стойках 4 и 5 установлен стержень 6, на котором размещены неподвижные смесительные элементы (кавитаторы) 7 9 со сквозными отверстиями 10 (позицией 7 обозначен первый элемент, позицией 9 последний).
Наибольший размер проекции элементов 7 9 на плоскость 11 обозначен h, внутренний диаметр корпуса 1 D, диаметр отверстий 10 d, а расстояние между кавитаторами 7 9 L. При этом соблюдается условия и соотношения:
h(1) (0,6-0,8)D
h(i+1) (0,9-0,95)hi
L (1-2)D
Sотв (0,2-0,25)Sh2
d (0,1-0,15)h,
где Sотв и Sh2 суммарная площадь живого сечения (суммарная площадь сечения) и площадь проекции кавитатора на плоскость 11.
Элементы 7 9 могут и не содержать отверстий 10 или в устройстве могут чередоваться кавитаторы с отверстиями 10 и без них, хотя наилучшие результаты могут быть получены, когда все кавитаторы выполнены со сквозными отверстиями 10, удовлетворяющими вышеприведенным соотношениям. Форма элементов 7 9 и их число также могут быть различными, например, могут использоваться крыльчатки, элементы в виде полусферы, многогранника, конуса, пирамиды и т. п. Различными могут быть и средства крепления кавитаторов в полости корпуса 1, например, могут использоваться кронштейны, растяжки и т.д.
Смеситель работает следующим образом. Поток обрабатываемой среды через штуцер 2 поступает в полость корпуса 1. При этом за элементами 7 9 образуется кавитационная каверна. Кавитационные струи, истекающие из отверстий 10, развивают общую каверну, генерируя дополнительные активные микропузырьки, интенсифицируя процесс смешивания.
Эффективность перемешивания, как показали приведенные исследования, существенно зависит от относительных размеров кавитаторов и повышается в случае, если каждый последующий кавитатор меньше предыдущего.
При соблюдении вышеприведенных соотношений размеров каждая каверна колеблется в резонансном режиме с последующей, что в 1,1 1,5 раза снижает гидравлическое сопротивление смесителя, а значит, и мощность насоса, вентилятора. Во столько же раз повышается степень гомогенизации и диспергирования потока, выводимого через штуцер 3.
Дальнейшему снижению гидравлического сопротивления и, соответственно, повышению степени гомогенизации в 1,5 2 раза способствует размещение кавитаторов на определенном расстоянии друг от друга, выполнение их перфорированными при соблюдении вышеприведенных соотношений для размеров отверстий 10.
Таким образом, использование предлагаемого устройства позволит снизить энергозатраты, массу и габариты смесителя, существенно повысить степень гомогенизации и качество приготовляемых эмульсий и смесей.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ ЖИДКОГО ТОПЛИВА И СТАТИЧЕСКИЙ СМЕСИТЕЛЬ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1994 |
|
RU2097408C1 |
СТАТИЧЕСКИЙ СМЕСИТЕЛЬ | 1994 |
|
RU2079350C1 |
СМЕСИТЕЛЬ | 1994 |
|
RU2081689C1 |
СМЕСИТЕЛЬ | 1995 |
|
RU2079352C1 |
СПОСОБ ПОЛУЧЕНИЯ ЖИДКОГО ТОПЛИВА И УСТРОЙСТВО ДЛЯ ЕГО ИЗГОТОВЛЕНИЯ | 1996 |
|
RU2120471C1 |
КАВИТАЦИОННЫЙ РЕАКТОР | 1995 |
|
RU2088321C1 |
СПОСОБ СЕПАРАЦИИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2001 |
|
RU2209183C2 |
УСТРОЙСТВО ДЛЯ ИЗГОТОВЛЕНИЯ ЖИДКОГО ТОПЛИВА | 1994 |
|
RU2105042C1 |
УСТРОЙСТВО ДЛЯ СМЕШИВАНИЯ ЖИДКОСТЕЙ И ПОРОШКОВ С ЖИДКОСТЬЮ | 2016 |
|
RU2625471C1 |
ГАЗОЖИДКОСТНОЙ СМЕСИТЕЛЬ | 2005 |
|
RU2293598C2 |
Сущность изобретения: смеситель содержит цилиндрический корпус, в полости которого соосно с ним расположены по меньшей мере два неподвижных смесительных элемента. Наибольший размер проекции смесительных элементов на плоскость, перпендикулярную продольной оси корпуса, расстояние между смесительными элементами, суммарное живое сечение отверстий, выполненных в смесительных элементах, и диаметр отверстий определяют из приведенных соотношений. 3 з.п. ф-лы, 3 ил.
h (0,6 0,8)D,
hi+1 (0,9 0,95) hi,
где hi наибольший размер проекций i-го смесительного элемента на плоскость, перпендикулярную продольной оси корпуса;
D внутренний диаметр корпуса.
0 |
|
SU157691A1 | |
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
ИМПУЛЬСНО-ПЕРИОДИЧЕСКИЙ ПРОТОЧНЫЙ ГАЗОРАЗРЯДНЫЙ CO-ЛАЗЕР | 1992 |
|
RU2022430C1 |
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Статический смеситель для смешивания химикатов с волокнистой массой | 1987 |
|
SU1625515A1 |
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Авторы
Даты
1997-06-20—Публикация
1994-05-18—Подача