ИСКУССТВЕННЫЙ СПУТНИК Российский патент 1997 года по МПК B64G1/00 B64G1/22 

Описание патента на изобретение RU2087387C1

Изобретение относится к космической технике, а более конкретно к средствам уменьшения аэродинамических возмущений, действующих на искусственные спутники (ИС) в орбитальном полете.

Известен метеорологический ИС "Метеор-2", имеющий корпус цилиндрической формы, в котором размещены научная телевизионная аппаратура и служебные системы, в частности система ориентации на основе силовых гироскопов, обеспечивающих требуемое положение спутника в орбитательной системе координат (постоянное направление его продольной оси на центр Земли). ИС содержит также управляемые панели солнечных батарей большой (сравнительно с габаритами корпуса) площади. На теневом участке орбиты (где нет энергосъема) панели могут переводиться в положение минимального аэродинамического сопротивления.

Однако в этом случае, несмотря на относительно низкую плотность атмосферы на высотах (≈800 км) полета спутника, сила лобового сопротивления корпуса из-за большого миделева сечения оказывает при значительных интервалах времени все же существенное влияние на изменение параметров орбиты и на продолжительность активного существования спутника; кроме того, аэродинамический возмущающий момент, действующий на корпус, приводит к дополнительному расходу энергии на поддержание необходимой ориентации ИС.

Наиболее близким из числа известных аналогов является ИС, содержащий корпус, систему ориентации и стабилизации, а также экран, установленный перед корпусом навстречу набегающему потоку (см. Экспресс-информация "Астронавтика и ракетодинамика", N 25, 1986//ВИНИТИ. М. 1986, с.19 26).

Недостаток известного ИС состоит в том, что, несмотря на хорошие тормозные свойства ИС при малом кинетическом нагреве, на рабочих орбитах создаются значительные аэродинамические возмущения.

Техническим результатом изобретения является уменьшение аэродинамических возмущений, действующих на ИС в орбитальном полете.

Указанный технический результат достигается тем, что в известном ИС, содержащем корпус, систему ориентации и стабилизации, а также экран, установленный перед корпусом навстречу набегающему потоку, данный экран выполнен с углом атаки рабочих поверхностей менее 50o.

Корпус ИС может быть, в частности, выполнен цилиндрическим, а экран - содержащим клин и расположенные по обе стороне от него прямоугольные пластины, при этом угол между плоскостью отражающей поверхности пластин и плоскостью, проходящей через переднюю кромку предыдущей пластины и заднюю кромку последующей, считая пластины от клина, равен углу установки этой поверхности относительно плоскости симметрии клина, но не менее 30o.

Сущность изобретения основана на том, что, как известно, в условиях орбитального полета набегающий поток газа верхней атмосферы при малых, менее 50o, углах атаки поверхности отражается от нее, главным образом, квазизеркально (малое значение Cх аэродинамического коэффициента лобового сопротивления), а при больших (близких к 90o) диффузно (большое значение Cх). Учитывая этот факт и выбраны характеристики экрана, позволяющего уменьшить аэродинамические возмущения за счет, в основном, "перевода" диффузного отражения в квазизеркальное.

В частном случае цилиндрического корпуса здесь описан один из возможных вариантов экрана с малым углом установки (малым углом атаки) при небольших его габаритах. Предложенное взаимное положение поверхностей обеспечивает практически однократное отражение потока, так как при углах атаки α=30 - 50o угол квазизеркального отражения равен углу падения, а при a=0 - 30o максимум отражения не превышает 30o.

Оценки показывают, что за счет экрана, имеющего форму клина с высотой, равной высоте цилиндрического корпуса, а с шириной основания его радиусу, аэродинамическое сопротивление корпуса снизится на ≈16%
Сущность изобретения поясняется чертежами, на которых:
фиг. 1 общий вид спутника с экраном в виде надувного клина,
фиг. 2 ИС с экраном-решеткой, сечение,
фиг. 3 ИС с надувным экраном-клином, сечение,
фиг. 4 ИС с экраном, конструктивно совмещенным с радиационными панелями системы поддержания теплового режима (ОПТР), сечение.

ИС содержит корпус 1, несущий целевую аппаратуру, и обеспечивающие ее работу системы, в частности систему ориентации и стабилизации с использованием реактивных двигателей 2, систему электрического питания на основе солнечных батарей 3 и СПТР спутника, сброс тепла которого осуществляется радиационными панелями 4, уменьшение аэродинамических возмущений ИС обеспечивается экраном 5.

Конструктивно экран может быть выполнен по различным схемам. При малых продольных габаритах наибольшей эффективностью (но и наибольшей сложностью) обладает экран-решетка (фиг.2), обеспечивающий практически любые малые углы атаки a Такой экран включает восемь прямоугольных пластин 6, установленных параллельно друг другу по обе стороны от клина 7. Угол b установки пластин 6 относительно плоскости AB симметрии ИС, соответствующий углу атаки a взят равным 25o(Cх≈1,5). Длина экрана принята равной высоте цилиндрического корпуса, а ширина выбрана из условия затенения им области САД (с центральным углом 2 2δ 2• 50o 100o) диффузного отражения от поверхности корпуса. Взаимное расположение пластин 7 определяется условием незатенения их друг другом и углом максимума квазизеркального отражения потока при a=β если 30°≅ β ≅ 50° то γ=β если 0 ≅ β ≅ 30°, то γ=30° (эти условия обеспечивают практически однократное взаимодействие потока с поверхностью экрана). В нашем случае γ=30° В целом экран-решетка эквивалентен в аэродинамическом отношении экрану в виде клина с высотой (n число пластин, h высота клина). Для рассматриваемого примера H 4h.

Более простым, легким и компактным в сложенном положении является надувной экран-клин (фиг.3). Один из возможных вариантов боковые грани выполнены в виде отдельных герметических полостей 8. Для увеличения надежности каждая грань может включать несколько независимых секций (см.фиг.1), а развертывание обеспечивается за счет предварительного введения в полость легко сублимирующего в космических условиях материала. Можно также покрыть ткань экрана составом (например, эпоксидной смолой, армированной стекловолокном), который затвердевает под действием солнечного излучения (в этом случае, естественно, отпадает необходимость в поддержании избыточного давления).

Наибольшей простотой и наименьшими габаритно-весовыми характеристиками обладает экран с нулевой собственной массой (идеальный случай), что достигается использованием имеющихся на ИС ресурсов, например, радиационных панелей СПТР (фиг.4), противометеоритных экранов и т.д. Панели СПТР представляют собой подвижные криволинейные (с радиусом кривизны корпуса) секции 9, которые после перевода разворотом вокруг узлов 10 в рабочее положение образуют клин с выпукло-вогнутыми гранями. Узлы 10 можно выполнить в виде упругих элементов (вместо малонадежных шарниров с приводами), а панели фиксировать с помощью постоянных магнитов ( известное решение). Следует отметить, что в таком положении панелей 9 улучшается также и теплоотвод (за счет свободного излучения внутренней поверхности). Штриховой линией на чертеже отмечено исходное положение панелей 9.

ИС, согласно изобретению, работает следующим образом.

В исходном (транспортном) положении экран 5 сложен, как показано штриховыми линиями на фиг.2, 4, и затем приводится в рабочее положение посредством механизма раскрытия и/или специальных средств наддува (с химическим отверждением т.п.), как отмечено выше.

С помощью системы ориентации и стабилизации ИС переводится в штатное положение при ориентации экрана 5 навстречу набегающему газовому потоку (фиг. 1).

Предлагаемый ИС обладает следующими техническими преимуществами перед прототипом:
1. Увеличенным временем активного существования на орбите.

2. Уменьшенным расходом энергии на поддержание требуемой высоты орбиты и углового положения спутника.

3. Улучшенной точностью прогноза движения спутника.

4. Повышенной защищенностью от действия микрометеоритов за счет рикошетирования их от наклонной поверхности (а не проникновения внутрь материала)[5]
Экономический эффект данного изобретения следует из вышеприведенных технических преимуществ его.

Похожие патенты RU2087387C1

название год авторы номер документа
АЭРОДИНАМИЧЕСКИЙ СТАБИЛИЗАТОР ИСКУССТВЕННОГО СПУТНИКА 1990
  • Ключников Валерий Николаевич
RU2042584C1
Искусственный спутник 2015
  • Емельянов Сергей Геннадьевич
  • Червяков Леонид Михайлович
  • Игнатенко Николай Михайлович
  • Кобелев Николай Сергеевич
  • Черкасов Евгений Николаевич
RU2612312C1
БОРТОВАЯ СИСТЕМА НАВИГАЦИИ ИСКУССТВЕННОГО СПУТНИКА ЗЕМЛИ 2013
  • Ключников Валерий Николаевич
RU2575302C2
КОСМИЧЕСКИЙ АППАРАТ ДЛЯ СПУСКА В АТМОСФЕРЕ ПЛАНЕТЫ И СПОСОБ ЕГО СПУСКА В АТМОСФЕРЕ ПЛАНЕТЫ (ВАРИАНТЫ) 2001
  • Семенов Ю.П.
  • Решетин А.Г.
  • Болотин В.А.
  • Брюханов Н.А.
  • Дядькин А.А.
  • Макарьев О.Е.
RU2213682C2
Возвращаемый с околоземной орбиты научно-исследовательский космический аппарат 2015
  • Финченко Валерий Семенович
  • Кульков Владимир Михайлович
  • Фирсюк Сергей Олегович
  • Терентьев Вадим Васильевич
RU2634608C2
КОСМИЧЕСКИЙ АППАРАТ 1998
  • Иванов Н.Ф.
RU2131384C1
СПОСОБ ОПРЕДЕЛЕНИЯ СКОРОСТНОГО НАПОРА НАБЕГАЮЩЕГО ПОТОКА НА БОРТУ КОСМИЧЕСКОГО АППАРАТА С СИСТЕМОЙ СИЛОВЫХ ГИРОСКОПОВ 1992
  • Ковтун В.С.
  • Волков О.В.
RU2087390C1
КОСМИЧЕСКИЙ АППАРАТ ДЛЯ СПУСКА В АТМОСФЕРЕ ПЛАНЕТЫ И СПОСОБ СПУСКА КОСМИЧЕСКОГО АППАРАТА В АТМОСФЕРЕ ПЛАНЕТЫ 1994
  • Болотин Виктор Александрович
  • Миненко Виктор Елисеевич
  • Решетин Андрей Георгиевич
  • Скотников Андрей Петрович
  • Щукин Александр Николаевич
RU2083448C1
АВИАЦИОННАЯ БОМБА, СТАБИЛИЗИРОВАННАЯ ПО КРЕНУ, С ИНЕРЦИАЛЬНО-СПУТНИКОВОЙ СИСТЕМОЙ НАВЕДЕНИЯ 2006
  • Шахиджанов Евгений Сумбатович
  • Бабушкин Дмитрий Петрович
  • Гуськов Евгений Иванович
  • Даньшин Александр Петрович
  • Ермакова Александра Анатольевна
  • Жуков Владимир Григорьевич
  • Жукова Ирина Григорьевна
  • Колобков Александр Николаевич
  • Кондратьев Александр Иванович
  • Кривов Иван Артемьевич
  • Кривогуз Алексей Сергеевич
  • Лагутина Ирина Сергеевна
  • Лазарев Владимир Николаевич
  • Лушин Валерий Николаевич
  • Матыцин Вячеслав Дмитриевич
  • Милосердный Эдуард Николаевич
  • Нарейко Владимир Александрович
  • Никулин Виталий Юрьевич
  • Плещеев Евгений Сергеевич
  • Плещеев Игорь Евгеньевич
  • Рибель Игорь Евгеньевич
  • Семенов Сергей Сергеевич
  • Сологуб Владимир Михайлович
  • Ткачев Владимир Васильевич
  • Финогенов Владимир Сергеевич
  • Храпов Анатолий Викторович
  • Черноусов Владимир Георгиевич
  • Шиндель Ольга Николаевна
RU2339905C2
СПОСОБ СПАСЕНИЯ РАКЕТ-НОСИТЕЛЕЙ МНОГОРАЗОВОГО ПРИМЕНЕНИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2001
  • Афанасьев В.А.
  • Борзов В.С.
  • Данилкин В.А.
  • Дегтярев Г.Л.
  • Дегтярь В.Г.
  • Марусик А.Ф.
  • Мещанов А.С.
  • Сиразетдинов Т.К.
  • Сытый Г.Г.
  • Теплицын Ю.С.
RU2202500C2

Иллюстрации к изобретению RU 2 087 387 C1

Реферат патента 1997 года ИСКУССТВЕННЫЙ СПУТНИК

Использование: в космической технике, и более конкретно, в качестве средств снижения аэродинамических возмущений, действующих на искусственные спутники (ИС) в орбитальном полете. Сущность изобретения: ИС содержит корпус 1 и систему ориентации и стабилизации 2; уменьшение аэродинамических возмущений достигается установкой перед корпусом 1, в направлении полета, экрана 5, рабочие поверхности которого обеспечивают угол атаки менее 50o, что соответствует квазизеркальному отражению набегающего потока, создающему, по сравнению с диффузным отражением, меньшую силу лобового сопротивления. При цилиндрическом корпусе ИС экран 5 выполнен в виде решетки, содержащей клин и расположенные с обеих сторон от него прямоугольные пластины, взаиморасположение которых дает практически однократное отражение потока. Для уменьшения габаритов экрана в нерабочем положении и снижения его массы экран может быть выполнен в форме клина надувной конструкции (или совмещен с другими системами ИС, например, радиационными панелями 4 системы поддержания его теплового режима). 1 з.п. ф-лы, 4 ил.

Формула изобретения RU 2 087 387 C1

1. Искусственный спутник, содержащий корпус, систему ориентации и стабилизации, а также экран, установленный перед корпусом навстречу набегающему потоку, отличающийся тем, что экран выполнен с углом атаки рабочих поверхностей менее 50o. 2. Спутник по п.1, отличающийся тем, что корпус выполнен цилиндрическим, а экран содержит клин и расположенные по обе стороны от него прямоугольные пластины, при этом угол между плоскостью отражающей поверхности пластин и плоскостью, проходящей через переднюю кромку предыдущей пластины и заднюю кромку последующей, считая пластины от клина, равен углу установки этой поверхности относительно плоскости симметрии клина, но не менее 30o.

Документы, цитированные в отчете о поиске Патент 1997 года RU2087387C1

Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Космонавтика
Энциклопедия
/Под ред
В.П.Глушко
- М.: Советская энциклопедия, 1985, с
Вагонетка для кабельной висячей дороги, переносной радиально вокруг центральной опоры 1920
  • Бовин В.Т.
  • Иващенко Н.Д.
SU243A1
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
Экспресс-информация "Астронавтика и ракетодинамика"
Видоизменение пишущей машины для тюркско-арабского шрифта 1923
  • Мадьяров А.
  • Туганов Т.
SU25A1
- М.: ВИНИТИ, 1986, с
Способ изготовления электрических сопротивлений посредством осаждения слоя проводника на поверхности изолятора 1921
  • Андреев Н.Н.
  • Ландсберг Г.С.
SU19A1
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. 1921
  • Богач Б.И.
SU3A1
Варакин Г.К., Фарсивонов В.Г
Печь-кухня, могущая работать, как самостоятельно, так и в комбинации с разного рода нагревательными приборами 1921
  • Богач В.И.
SU10A1
Изв
АН СССР
- МЖГ
ПРИБОР ДЛЯ ЗАПИСИ И ВОСПРОИЗВЕДЕНИЯ ЗВУКОВ 1923
  • Андреев-Сальников В.А.
SU1974A1
Очаг для массовой варки пищи, выпечки хлеба и кипячения воды 1921
  • Богач Б.И.
SU4A1
Варакин Г.К., Фарафонов В.Г
Аэродинамические характеристики элемента поверхности, обтекаемой высокоскоростным свободномолекулярным потоком
Изв
АН СССР
- МЖГ
Сплав для отливки колец для сальниковых набивок 1922
  • Баранов А.В.
SU1975A1
Кипятильник для воды 1921
  • Богач Б.И.
SU5A1
Реферативный журнал "Ракетная и космическая техника"
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Циркуль-угломер 1920
  • Казаков П.И.
SU1991A1
Крутильная машина для веревок и проч. 1922
  • Макаров А.М.
SU143A1

RU 2 087 387 C1

Авторы

Ключников Валерий Николаевич

Даты

1997-08-20Публикация

1992-09-02Подача