Изобретение относится к радиобиологии и радиационной медицине и касается способов защиты организма при облучении.
Лекарственная защита при действии ионизирующей радиации многообразна по своему содержанию и включает препараты различных химических групп.
Известны, например серусодержащие радиопротекторы, действующие непосредственно на клетки мишени или на условия существования этих клеток, а также радиопротекторы, уменьшающие радиационное поражение организма за счет гемической, тканевой или циркулярной гипоксии / индолалкиламины, цианиды /.
Однако, известные радиопротекторы характеризуются высокой токсичностью, что значительно ограничивает их использование и исключает возможность частого применения. Особенностью существующих радиопротекторов является значительное снижение из радиозащитного эффекта при многократном фракционировании дозы облучения и практическое его отсутствие при облучении с низкой мощностью дозы. Развитие радиозащитного эффекта известных препаратов при введении их только до облучения, делает невозможным применение их для лечения лучевых повреждений, которые уже возникли в организме в результате облучения. Новые исследования в данной области показали возможность использования комплекса витаминов и микроэлементов, способствующих ускорению процессов пострадиационного восстановления тканей облученного организма. Однако терапевтическая эффективность этих способов очень мала.
В связи с изложенным, была поставлена задача разработать способ защиты организма от ионизирующей радиации, эффективный при многократном облучении, при любом режиме введения препарата, не оказывающий токсического действия на организм.
Сущность изобретения состоит в том, что впервые в рамках заявленного способа для защиты организма от облучения использовали ароматические амины на основе палладия, например эфазол в предложенных дозах и режимах.
Существенными признаками предложения является использование эфазола, ранее для решения подобной задачи не применявшегося, а также режимы и дозы введения препарата.
Эфазол представляет собой соединение ароматических аминов на основе палладия, полученное известным способом.
Для раскрытия сущности ниже приведены результаты экспериментальных исследований по оценке защитного действия эфазола при однократном и фракционированном тотальном гамма облучении животных и обработке оптимального режима использования эфазола.
Материалы и методы.
Эксперименты проведены на мышах / гибридах F / CDF x C BI / самцах. Всего использовано около двух тысяч животных. Тотальное гаммаоблучение осуществлялось при помощи установки "Стебель 3 А" с мощностью дозы 8,3 p/с / Цезий 137 /.
Контрольным группами перед облучением внутривенно вводил изотонический раствор хлорида натрия в объеме 0,3 мл на мышь.
Опытным путем мышей внутривенно в хвостовую вену вводили 0,35 раствор Эфазола в изотоническом растворе хлорида натрия в дозах от 2,5 мг/кг до 80 мг/кг.
Мышей помещали в стеклянные камеры по 3 4 животных и вводили в зону облучения установки с расположением источников по типу "беличьего хвоста". Дозы облучения устанавливали времен нахождения животных в активной зоне. Дозиметрический контроль фиксировал перепад доз внутри контейнера не более 10 Облучение животных производили в диапазоне доз от 4,0 до 10,0 Гр.
Наблюдение за животными проводили в течение 30 сут. Следили за состоянием и поведением животных, отмечали павших и сроки их гибели.
Выживаемость животных определяли в процентах 8 и 30 дни наблюдения. На основании данных наблюдения получали кривые выживаемости мышей по шкале пробит процентов в зависимости от дозы облучения и путем экстерполяции на шкалу доз, определяли ЛД50/15 и ДЛ50/30.
Эффект препарата оценивали определением величены фактора изменения дозы / ФИД /, получаемого отношением ЛД 50/30 в опыте к ЛД 50/30 в контроле.
Результаты экспериментов.
Полученные данные представлены в табл. 1 и 2. Всего использовано по 10 - 40 животных на каждую "точку" / дозу облучения /.
Эффект эфазола / табл. 1 / проявляется при введении препарата как непосредственно перед облучением, так и непосредственно после него с ФИД 1,1 при дозах препарата 10 мг/ кг, выявляемому как кишечной так и по костномозговой гибели животных.
По костномозговой гибели животных эффект эфазола начинает проявляться уже с дозы 2,5 мг/кг / ФИД 1,07/ и практически выходит на плато с ФИД 1,1 в диапазоне доз вводимого препарата от 10 до 40 мг/кг.
По гибели животных от кишечного синдрома в дозах 2,5 и 5,0 мг/кг эфазол не обладает защитным действием, которое начинает проявляться с дозы 10 мг/кг и остается неизменным до дозы 40 мг/кг.
Далее были поставлены эксперименты по определению ЛД при двукратном облучении мышей в дозе 4 ГР за первую фракцию и дозах от 4 до 6,0 Гр за вторую фракцию с интервалом в 4 ч (табл. 2). Как видно из таблицы, использование эфазола через 15 мин после первой фракции облучения позволяет за счет увеличения уровней репарации стволовых клеток костного мозга увеличить выживаемость мышей с ФИД=1,06. Использование эфазола через 15 мин после первой и после второй фракции облучения позволяет увеличить ФИД до 1,11. Это происходит за счет увеличения уровней репарации сублетарных лучевых повреждений, как от первой, так и от второй дозы облучения.
Приведенные данные показывают эффективность использования эфазола при низких дозах облучения. Учитывая низкую токсичность препарата и значительную широту его терапевтического действия от 10 до 80 мг/кг, можно надеяться на эффективность использования эфазола при длительном /хроническом/ облучении с низкими мощностями доз.
Это предположение подтвердилось в эксперименте при применении эфазола в дозе 10 мг/кг через 15 мин после каждой фракции при пятикратном фракционировании дозы, в котором показана возможность увеличить эффективность терапии эфазолом /табл. 3/ ФИД 1,47.
Анализируя полученные данные можно придти к следующему заключению:
Препарат эфазол относится к новому классу соединений обладающих защитным действием при облучении.
Действие препарата осуществляется как во время, так и после облучения и продолжается около 4 ч, чем эфазол принципиально отличается от известных радиопротекторов, эффективность которых проявляется только при введении их до облучения.
Действие препарата или его метаболитов реализуется в организме путем увеличения уровней репарации сублетарных лучевых повреждений стволовых клеток кишечника и костного мозга облученных животных. При этом величина эффекта эфазола зависит от дозы облучения в интервалах доз от 4,0 до 10,0 Гр / кривые выживаемости в контроле и опыте идут параллельно /.
Существенным отличием действия эфазола является практически неизменная его величина в интервалах доз препарата от 10 до 80 мг/кг / ФИД 1,1 /. Это позволяет применять низкие, далекие от токсичности дозы препарата и создает возможности для его многократного применения при хроническом облучении с низким мощностями доз, при которых все существующие радиопротекторы неэффективны.
Нами получены принципиально новые данные, когда при уменьшении дозы облучения и увеличении количества фракций, эффект препарата увеличивается.
Пример 1. В эксперименте использовали 500 мышей гибридов линии F / CDF x C BI / самцов. Тотальное гамма облучение осуществляли при помощи установки от "Стебель 3 А" с мощностью дозы 8,3 p/с / Цезий 137 /. Контрольным группам перед облучением внутривенно вводили изотонический раствор в объеме 0,3 мл на мышь. 0,35 раствор эфазола в изотоническом растворе вводили внутривенно в дозах от 2,5 до 80 мг/кг за 15 мин и 4 ч до облучения и через 15 мин, 4 ч, 6 ч после облучения.
Мышей помещали в стеклянные камеры по 3 4 животных и вводили в зону облучения установки с расположением источников по типу "беличьего хвоста". Наблюдение за животными осуществляли в течение 30 сут после облучения. Эффект препарата оценивали определением величины фактора изменения дозы / ФИД /, получаемого отношением ЛД 50/30 в опыте к ЛД50/30 в контроле.
В процессе эксперимента было выявлено, что при введении препарата в дозах 2,5 и 5,0 мг/кг за 15 мин до облучения ФИД составил 1,07 и 1,09. При введении эфазола в дозах 20 и 40 мг/кг за 15 мин до облучения ФИД 1,04 и 1,1. При введении эфазола в дозе 80 мг/кг за 15 мин до облучения ФИД 1,2, а за 15 мин после облучения -1,12.
При введении препарата через 4 и 6 ч после облучения в дозе 10 мг/кг ФИД составил соответственно 1,03 и 1,0.
Таким образом, данный пример иллюстрирует эффективность эфазола в условиях тотального облучения при введении как до, так и после облучения.
Пример 2. В эксперименте использовали 500 мышей линии CBAх CBI.
Постановка эксперимента как в примере 1.
Облучение осуществляется двумя фракциями с интервалом в 4 ч. Доза облучения за 1 фракцию составила 4 Гр, за вторую 4 6 Гр.
Эфазол вводил внутривенно в дозе 10 мг/кг через 15 мин после 1 фракции или через 15 мин после 1 и 2 фракцией. Выживаемость определяли в процентах на 8 и 30 дни наблюдения. На основании данных наблюдения получали кривые выживаемости мышей по шкале пробит процентов в зависимости от дозы облучения. ЛД50/30 рассчитывали по кривым выживаемости полученными по шкале суммарных доз облучения. Как показали эксперименты, при введении эфазола через 15 мин после 1 фракции выживаемость составила 70 90% / ФИД 1,6 /, а при введении эфазола через 15 мин после 1 и после 2 фракций 60 90 / ФИД, 1/.
Таким образом, приведенный пример иллюстрирует эффективность эфазола при низких дозах фракционного облучения.
Пример 3. В эксперименте использовали 700 мышей линии F / CBA x CBI /.
Постановка эксперимента как в примере 1. Облучение осуществляли пяти фракциями с интервалами между фракциями 24 ч, при дозе на каждую фракцию 2 3 Гр.
Эфазол вводил внутрибрюшинно в дозе 10 мг/кг через 15 мин после каждой фракции.
Было выявлено, что и при многократном облучении эфазол обладает защитными свойствами. При этом ФИД составил 1,247.
Таким образом, приведенный пример иллюстрирует эффективность эфазола аж даже в малых дозах при пятикратном облучении.
В целом, приведенные примеры подтверждают существенность заявленных признаков предложения:
режимы введения эфазола
дозы эфазола в интервале 10 80 мг/кг, что составляет в среднем 1/10 - 1/2 от максимально переносимых.
Сравнение результатов приведенных исследований с литературными данными по изучаемому вопросу, позволило охарактеризовать заявленный способ следующим образом:
В целом, следует отметить, что предложенный способ по сравнению с известными по уровню техники обладает следующими преимуществами:
1. Эффективность при введении как до, так и после облучения.
2. Эффективен при многократном фракционированном облучении и при облучении низкими дозами
3. Нетоксичен, не вызывает осложнений.
Таким образом, предложенный способ благодаря своим преимуществам по - видимому найдет широкое применение в радиационной биологии и медицине.
название | год | авторы | номер документа |
---|---|---|---|
СОЕДИНЕНИЯ НА ОСНОВЕ ПАЛЛАДИЯ И ПРОИЗВОДНЫХ АРОМАТИЧЕСКИХ АМИНОВ И СПОСОБ ИХ ПОЛУЧЕНИЯ | 1992 |
|
RU2022968C1 |
Катионно - анионные комплексы палладия | 2018 |
|
RU2699809C1 |
РАДИОЗАЩИТНОЕ СРЕДСТВО | 2010 |
|
RU2428192C1 |
СПОСОБ ПОЛУЧЕНИЯ СРЕДСТВА ЗАЩИТЫ ОРГАНИЗМА ОТ ИОНИЗИРУЮЩЕГО ИЗЛУЧЕНИЯ | 2005 |
|
RU2350353C2 |
СПОСОБ ЗАЩИТЫ ЖИВОТНЫХ ОТ ВЫСОКОДОЗОВОГО ИОНИЗИРУЮЩЕГО ИЗЛУЧЕНИЯ | 2019 |
|
RU2701155C1 |
СПОСОБ КОРРЕКЦИИ ВТОРИЧНОГО ИММУНОДЕФИЦИТА | 1996 |
|
RU2138258C1 |
Способ фармакологической защиты от ионизирующих излучений | 2017 |
|
RU2663465C1 |
Фармацевтическая композиция на основе соединения палладия | 2015 |
|
RU2613305C2 |
СПОСОБ ПРОФИЛАКТИКИ И ЛЕЧЕНИЯ ОСТРОГО ЛУЧЕВОГО ПОРАЖЕНИЯ | 2021 |
|
RU2770991C2 |
СПОСОБ ПРИМЕНЕНИЯ РАСТИТЕЛЬНОГО ПОЛИСАХАРИДА В КАЧЕСТВЕ РАДИОПРОТЕКТОРА И СТИМУЛЯТОРА КОЛОНИЕОБРАЗОВАНИЯ СТВОЛОВЫХ КЛЕТОК СЕЛЕЗЕНКИ ОБЛУЧЕННЫХ ЖИВОТНЫХ | 2013 |
|
RU2537033C1 |
Изобретение относится к радиобиологии и радиационной медицине и касается способов защиты организма при облучении. Сущность способа состоит в том, что осуществляют введение ароматических аминов на основе палладия как до, так и после облучения в дозах, составляющих 10 мг/кг веса лабораторного животного. Способ не вызывает осложнений, эффективен при многократном облучении малыми дозами. 4 табл.
Способ защиты организма при многократном облучении ионизирующей радиацией, включающий введение лекарственных препаратов, отличающийся тем, что используют ароматические амины на основе палладия, а введение осуществляют до и после облучения в дозе 10 мг/кг веса лабораторного животного.
Москалев Ю.И | |||
Материалы совещания Международной комиссии по радиологической защите | |||
- Медицинская радиология, 1988, т | |||
Способ сопряжения брусьев в срубах | 1921 |
|
SU33A1 |
Авторы
Даты
1997-09-10—Публикация
1993-08-05—Подача