МАГНИТНЫЙ МАССООБМЕННЫЙ АППАРАТ Российский патент 1997 года по МПК B01D47/10 B01D53/18 

Описание патента на изобретение RU2091136C1

Изобретение относится к области нейтрализации токсичных газов и может найти применение для охлаждения, абсорбции и очистки от пыли отходящих газов металлургических, химических и других производств, а также для проведения технологических тепло- и массообменных процессов в системе газ-жидкость.

Известен тепломассообменный аппарат в виде трубы Вентури, имеющий дефлектор-каплеуловитель и конусный обтекатель, регулирующий сечение горловины трубы Вентури.

В этом аппарате жидкость поступает в конфузор, диффузор, погруженный в жидкость, и подхватывает за собой капли жидкости, которые отделяются от газового потока в дефлекторе-каплеуловителе.

Недостатком известной конструкции является большой газопыле- и каплеунос. Этот недостаток устраняется вводом магнитных систем высокой энергии.

На фиг.1 представлен общий вид массообменного аппарата; на фиг. 2-схема размещения магнитных блоков.

Массообменный аппарат включает корпус 1, расположенную в нем трубу Вентури, включающую газовую камеру 2 в виде полой трубы, в нижней части переходящую в конфузор 3, горловину 4, диффузор 5, жидкостную форсунку 6 для подачи подпиточной жидкости, конусный обтекатель 7, шток 8 которого связан с подъемным устройством 9. Аппарат имеет газоход 10 для отвода газов в верхней части, а в нижней части жалюзийный дефлектор-каплеуловитель 11 с магнитными блоками 12 и гидрозатвор 13.

Магнитные блоки 12 (см. фиг.2) закреплены с внутренней стороны дефлектора-каплеуловителя 11 на расстоянии L, обеспечивающем напряженность магнитного поля 100 эрстед, с помощью втулок 14.

Аппарат работает следующим образом.

Горячие запыленные газы мартеновских, конвертерных или химических производств через подводящий газоход вводят соосно или тангенциально в газовую камеру 2, в которой благодаря инерционному или центробежному эффектам соответственно, происходит осаждение крупных (более 5 мкм) фракций пыли. Затем предварительно чищенные таким образом газы поступают в контактирующие элементы трубы Вентури конфузор 3, горловину 4 и диффузор 5, частично погруженные в орошающую жидкость. Благодаря эжектирующему действию скоростной газовой струи через зазор между конфузором 3 и нижней частью камеры 2 в трубу Вентури на орошение газа поступает жидкость, удельный расход которой регулируют изменением положения трубы Вентури через шток 8 с помощью устройства 9. Скорость газожидкостного потока регулируют перемещением конусного обтекателя 7 с помощью подъемного устройства 9 через шток 8.

Такая конструкция позволяет гибко изменять параметры газожидкостного потока в активном сечении: скорость газа в диапазоне 20-150 м/с и выше, удельный расход жидкости на орошение в пределах 10 л/м3 газа и выше, и таким образом, изменять величину коэффициента газопыле- и массообмена.

Благодаря интенсивному перемешиванию газа и жидкости в трубе Вентури образуется гетерофазная газожидкостная эмульсия с высокоразвитой активной поверхностью контакта фаз. Далее происходит разделение фаз: очищенный и охлажденный газ проходит через жалюзийный дефлектор-каплеуловитель 11 с магнитными блоками 12 и его удаляют из аппарата через отводящий газовод 11, жидкость отработанную возвращают в цикл рециркуляции и таким образом, многократно используют в теплообменном процессе.

Обновление жидкости происходит непрерывно или периодически через форсунку 6 ввода жидкости: отработанную жидкость удаляют через гидрозатвор 13 и направляют далее на охлаждение, отстаивание или десорбцию. Удаление шлама осуществляют через гидрозатвор 13. Магнитные блоки размещены в дефлекторе-каплеуловителе с внутренней стороны на расстоянии, обеспечивающем напряженность магнитного поля 100 эрстед между магнитными блоками, каждый блок имеет 2-20 магнитных полюсов с напряженностью каждый 5 килоэрстед. Конусный обтекатель снаружи покрыт лаком с порошком, намагниченным до 5 килоэрстед. При этом магнитный порошок образует шипы высотой 1-10 миллиметров, расположенные в шахматном порядке.

Использование магнитных блоков повышает эффективность газопыле- и массообменных процессов.

Похожие патенты RU2091136C1

название год авторы номер документа
Мокрый пылеуловитель 1990
  • Яковенко Михаил Михайлович
SU1757716A1
Устройство для мокрой очистки газа 1976
  • Ларин Юрий Кузьмич
  • Губачев Владлен Викторович
  • Каненко Галина Матвеевна
  • Жилинский Александр Николаевич
  • Черепинский Марк Матвеевич
SU654272A1
Устройство для очистки газов 1987
  • Яковенко Михаил Михайлович
  • Авербух Виктор Яковлевич
  • Чечулин Владимир Борисович
SU1533737A1
УСТРОЙСТВО ДЛЯ ОЧИСТКИ ГАЗА 1991
  • Коряков В.В.
  • Колпаков Ю.А.
  • Золотарев Н.Е.
  • Ахметов А.С.
  • Резеньков М.И.
  • Щекотуров А.С.
RU2033242C1
ГАЗОПРОМЫВАТЕЛЬ 2004
  • Неганов Олег Вячеславович
  • Неганова Марина Александровна
  • Силантьев Александр Михайлович
  • Силантьев Сергей Александрович
  • Яковенко Галина Борисовна
RU2277960C2
Устройство для мокрой очистки газов 1981
  • Фарберович Макс Яковлевич
  • Дратва Владимир Давыдович
  • Холпанов Леонид Петрович
  • Валевахин Сергей Александрович
  • Чернышев Александр Иванович
  • Гольдентулер Борис Ильич
SU986466A1
Способ очистки газов и устройство для его осуществления 2017
  • Новиков Андрей Евгеньевич
  • Овчинников Алексей Семёнович
  • Филимонов Максим Игоревич
  • Ламскова Мария Игоревна
RU2650967C1
Скруббер Вентури 1983
  • Исаев Виктор Михайлович
  • Балашов Евгений Васильевич
  • Мартыненко Владимир Александрович
  • Первых Евгений Иванович
  • Лопатин Евгений Борисович
SU1125025A1
Скоростной газопромыватель 1986
  • Нуракишев Саят Шауенович
  • Глебов Юрий Дмитриевич
  • Комаров Геннадий Алексеевич
  • Штейман Александр Романович
  • Нуракишева Ольга Александровна
SU1386254A1
СИСТЕМА ОЧИСТКИ КОНВЕРТЕРНЫХ ГАЗОВ 2012
  • Сталинский Дмитрий Витальевич
  • Мантула Вадим Дмитриевич
  • Каненко Галина Матвеевна
  • Семенов Денис Вадимович
  • Миллер Елена Александровна
RU2491115C1

Иллюстрации к изобретению RU 2 091 136 C1

Реферат патента 1997 года МАГНИТНЫЙ МАССООБМЕННЫЙ АППАРАТ

Использование: относится к области нейтрализации токсичных газов и может найти применение для охлаждения, абсорбции и очистки от пыли отходящих газов металлургических, химических и др. производств, а также для проведения технологических тепло- и массообменных процессов в системе газ-жидкость. Сущность изобретения: аппарат представляет скруббер Вентури, имеющий дефлектор-каплеуловитель. Дефлектор-каплеуловитель с внутренней стороны снабжен магнитными блоками, создающими магнитные поля высокой энергии. Эффективность мокрых аппаратов зависит от скорости газов в активном сечении аппарата и от удельного расхода жидкости на орошение газа. Конструкция аппарата позволяет автономно изменять оба эти параметра и создать тем самым любые гидродинамические условия взаимодействия фаз. Аппарат в отличие от известных является универсальным и может быть использован для проведения любых тепло- и массообменных процессов. Аппарат экономичен, поскольку требует малых расходов жидкости за счет ее многократного использования. 2 з.п. ф-лы, 2 ил.

Формула изобретения RU 2 091 136 C1

1. Массообменный аппарат для очистки газов от пыли, выполненный в виде трубы Вентури, имеющий дефлектор-каплеуловитель и конусный обтекатель, отличающийся тем, что дефлектор-каплеуловитель с внутренней стороны снабжен магнитными блоками, создающими магнитные поля высокой энергии, магнитные блоки установлены на расстоянии, обеспечивающем напряженность магнитного поля 100 Э, при этом каждый магнитный блок имеет 2 20 магнитных полюсов, напряженностью каждый 5 кЭ. 2. Аппарат по п. 1, отличающийся тем, что конусный обтекатель снаружи покрыт лаком с магнитным порошком, намагниченным до 5 кЭ. 3. Аппарат по п.2, отличающийся тем, что магнитный порошок образует шипы высотой 1 10 мм, расположенные в шахматном порядке.

Документы, цитированные в отчете о поиске Патент 1997 года RU2091136C1

SU, авторское свидетельство, 506970, кл
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1

RU 2 091 136 C1

Авторы

Силантьев Александр Михайлович

Силантьев Сергей Александрович

Даты

1997-09-27Публикация

1994-06-23Подача