Изобретение относится к области низкотемпературной обработки природного газа и может быть использовано в газовой и нефтяной промышленности в процессах осушки и отбензинивания при подготовке газа к транспорту.
Известен способ низкотемпературной обработки газа, заключающийся в предварительном охлаждении, в рекуперативном теплообмене, сепарации и расширении газового потока с понижением температуры, в качестве расширительного устройства используют пульсационный охладитель газа. [1]
Недостатком известного способа является невозможность компримирования расширенного газа.
Известен способ низкотемпературной обработки природного газа, заключающийся в предварительном охлаждении в процессе рекуперации, сепарации, расширении с понижением температуры, с производством и отводом механической энергии, нагреве и компримировании газа с подводом произведенной механической энергии. При этом расширение и компримирование газового потока осуществляют в детандерно-компрессорном агрегате [2]
Недостатком известного способа является изготовления, низкой затраты вследствии высокой стоимости изготовления, низкой надежности и сложности технологического обслуживания, что связано с использованием лопаточных машин в качестве детандерно-компрессорного агрегата.
Наиболее близким по технической сущности и достигаемому результату к заявленному способу является способ низкотемпературной обработки природного газа, заключающийся в его предварительном охлаждении, в рекуперативном теплообмене, сепарации, расширении с понижением температуры в режиме генерации волн сжатия, нагреве при рекуперации холода и компримирования этого же газового потока энергией волн сжатия (Патент РФ N 2002177, кл. F 25 J 3/07, 1993).
Недостатком известного способа является ограничение степени сжатия компримируемого потока, приводящее к тому, что давление сжатого газа существенно ниже давления газа перед расширением. Это приводит к трудностям при утилизации скомпримированного потока и ограничивает объем применения известного способа.
Изобретение направлено на повышение степени сжатия компримируемого газа. Это достигается тем, что в известном способе низкотемпературной обработки природного газа, включающем предварительное охлаждение в рекуперативном теплообмене, сепарацию, расширение с понижением температуры в режиме генерации волн сжатия, нагрев при рекуперации холода и компримирование энергии волн сжатия, нагретый поток частично отводят за пределы процесса, а энергию волн сжатия подводят к потоку, оставшемуся в процессе и осуществляющему не менее 10% от массы расширенного потока.
Кроме того, газовый поток после расширения повторно сепарируют от жидкости.
По мере уменьшения соотношения между массами компримируемого и расширяемого потоков газа происходит увеличение степени сжатия компримируемого газа. При доле компримируемого потока, составляющей 30.35% от массы расширенного потока, давление сжатого газа достигает давления исходного потока перед его расширением в волновом обменнике давления, а при дальнейшем уменьшении доли компримируемого потока его давление превышает давление исходного потока перед расширением. Однако снижение доли компримируемого потока менее 10% не приводит к дальнейшему росту давления, а влечен за собой срыв работы волнового обменника давления. Таким образом, снижение доли компримируемого потока ниже 10% нецелесообразно.
Таким образом, реализация данного технического решения позволяет компримировать газовый поток до давлений равных или превышающих давление исходного потока перед расширением. Это упрощает последующую утилизацию газового потока и расширяет объем внедрения установок низкотемпературной обработки газа, реализующих данный способ.
На фиг. 1 изображена схема установки реализующей способ низкотемпературной обработки газа; на фиг. 2 вариант схемы установки для реализации способа низкотемпературной обработки газа, согласно которому газ после расширения в волновом обменнике давления вторично сепарируют для отделения сконденсировавшейся жидкости.
Основными элементами установок, реализующих способ низкотемпературной обработки природного газа, являются рекуперативный теплообменник 1, газожидкостные сепараторы 2, 3 и волновой обменник давления 4, включающий расширительную часть (детандер) 4' и компрессорную часть 4".
Предлагаемый способ низкотемпературной обработки газа осуществляют следующим образом. Подлежащий обработке газ направляют в рекуперативный теплообменник 1, где происходит его предварительное охлаждение, сопровождающееся конденсацией тяжелых углеводородов и воды. Далее газожидкостной поток направляют в сепаратор 2, где происходит сепарация газа от жидкости. Жидкость из сепаратора 2 направляют в товарный парк или на дальнейшую переработку Отсепарированный газ направляют в расширительную часть 4' волнового обменника давления 4, в котором его расширяют с понижением температуры. Процесс расширения в волновом обменнике давления осуществляют в режиме генерации волн сжатия, энергию которых отводят от расширяемого потока к компримируемому, вследствие чего расширяемый поток охлаждается. После расширения газа в волновом обменнике давления его подают в рекуперативный теплообменник 1, где он нагревается, охлаждая при этом подлежащий сепарации газовый поток, и затем его часть выводят из установки, направляя потребителю низконапорного газа. Оставшуюся часть газа, составляющую не менее 10% от расширенного потока, направляют в компрессорную часть 4" волнового обменника давления 4, где его компримируют энергией волн сжатия. Сжатый поток направляют потребителю.
В случае конденсации жидкости после расширения газового потока в волновом обменнике давления газ направляют на повторную сепарацию в газожидкостной сепаратор 3.
Использование предлагаемого способа низкотемпературной обработки газа позволяет увеличить степень сжатия компримируемого потока. Давление сжатого газа при реализации данного способа может равняться или на 5 10% превышать давление потока перед расширением. Это позволяет расширить объем внедрения способа низкотемпературной обработки газа.
Пример реализации способа. Вариант реализации способа низкотемпературной обработки газа поясняется на фиг. 1. Исходный газ с давлением 10 МПа и температурой 290 К направляют в рекуперативный теплообменник 1, в котором его предварительно охлаждают до 255 К. Это приводит к частичной конденсации тяжелых углеводородов и воды. Выделившуюся жидкость сепарируют в газожидкостном сепараторе 2 и направляют на дальнейшую переработку. Отсепарированный поток с давлением 9,8 МПа с температурой 255 К подают в расширительную часть 4' волнового обменника давления 4, на выходе из которого он имеет давление 4,1 МПа и температуру 218 К, и далее направляют в рекуперативный теплообменник 1 для охлаждения исходного газа. В теплообменнике 1 газ нагревают до 256 К и частично (70% от потока) выводят из процесса и направляют потребителю низконапорного газа. Оставшуюся часть (30% от расширенного потока) направляют в компрессорную часть волнового обменника давления 4, где его компримируют энергией волн сжатия до давления 10 МПа. Сжатый газ направляют потребителю.
Таким образом, применение предлагаемого способа позволяет в отличие от прототипа компримировать газовый поток до давлений равных или превышающих давление исходного потока перед расширением. Благодаря этому может осуществляться транспорт отсепарированного и сжатого газа без привлечения дополнительных технических и денежных средств, а также расширяется объем внедрения установок, реализующих данный способ.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ НИЗКОТЕМПЕРАТУРНОЙ ОБРАБОТКИ ПРИРОДНОГО ГАЗА | 1995 |
|
RU2092749C1 |
СПОСОБ НИЗКОТЕМПЕРАТУРНОЙ ОБРАБОТКИ ПРИРОДНОГО ГАЗА | 1995 |
|
RU2096699C1 |
СПОСОБ ПОДГОТОВКИ НЕСТАБИЛЬНОГО УГЛЕВОДОРОДНОГО КОНДЕНСАТА К ТРАНСПОРТИРОВАНИЮ ПО ТРУБОПРОВОДУ В ОДНОФАЗНОМ СОСТОЯНИИ | 1995 |
|
RU2124682C1 |
СПОСОБ ПОДГОТОВКИ ПРИРОДНОГО ГАЗА К ТРАНСПОРТУ | 1995 |
|
RU2088866C1 |
СПОСОБ ИЗВЛЕЧЕНИЯ СТАБИЛЬНОГО КОНДЕНСАТА ИЗ ПРИРОДНОГО ГАЗА | 1997 |
|
RU2133931C1 |
СПОСОБ ПОДГОТОВКИ ГАЗОКОНДЕНСАТНОЙ СМЕСИ К ТРАНСПОРТУ | 1996 |
|
RU2092690C1 |
СПОСОБ ИЗВЛЕЧЕНИЯ СТАБИЛЬНОГО КОНДЕНСАТА ИЗ ПРИРОДНОГО ГАЗА | 1995 |
|
RU2096701C1 |
СПОСОБ ПОДГОТОВКИ ГАЗОКОНДЕНСАТНОЙ СМЕСИ К ТРАНСПОРТУ | 1996 |
|
RU2128771C1 |
СПОСОБ ПОДГОТОВКИ ГАЗОКОНДЕНСАТНОЙ СМЕСИ К ТРАНСПОРТУ | 1996 |
|
RU2119049C1 |
СПОСОБ ВЫДЕЛЕНИЯ СТАБИЛЬНОГО КОНДЕНСАТА ИЗ ПРИРОДНОГО ГАЗА | 1998 |
|
RU2171270C2 |
Область использования: к низкотемпературной обработке природного газа преимущественно при его заводской и промысловой обработке. Сущность изобретения: газовый поток предварительно охлаждают в рекуперативном теплообмене, сепарируют от сконденсировавшейся жидкости, расширяют с понижением температуры в режиме генерации волн сжатия, нагревают при рекуперации холода и частично отводят за пределы процесса, а энергию волн сжатия подводят к потоку, оставшемуся в процессе и подлежащему компримированию и составляющему не менее 10% от массы расширенного потока. 1 з.п. ф-лы, 2 ил.
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Бобров Д.М | |||
и др | |||
Применение аппаратов пульсационного охлаждения газа в газовой промышленности | |||
Обзор инф.,сер.1 | |||
Подготовка и переработка газа и газового конденсата.- М.: ВНИИЗгазпром, 1985, вып | |||
Способ восстановления хромовой кислоты, в частности для получения хромовых квасцов | 1921 |
|
SU7A1 |
Способ окисления боковых цепей ароматических углеводородов и их производных в кислоты и альдегиды | 1921 |
|
SU58A1 |
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
SU, авторское свидетельство, N 219606, кл | |||
Видоизменение пишущей машины для тюркско-арабского шрифта | 1923 |
|
SU25A1 |
Авторы
Даты
1997-10-10—Публикация
1995-02-27—Подача