Изобретение относиться к способам получения веществ, элементов и сплавов путем выделения их из паров, растворов и расплавов или из веществ в другом кристаллическом или аморфном состоянии, например, при выделении органических соединений, при перекристаллизации при выплавке черных, цветных и благородных металлов.
Известен способ кристаллизации пентагидрат гексабората кальция из борной кислоты путем выщелачивания кислоты с использованием нейтрализатора - карбоната кальция (Федюшкин Б.Ф. Минеральные удобрения с микроэлементами. Л. Химия, 1989, с. 42-43).
Известен способ получения кристаллов борной кислоты из боратовой руды путем растворения последней в серной кислоте, получения борной кислоты, очистки ее на фильтр-прессах, охлаждения в вакуум-кристаллизаторе и отделения кристаллов на центрифуге. (Там же, с. 60-61).
В общем виде выделение кристаллов органических соединений представляет собой следующее: вещество, из которого выделяют кристаллы, вместе с растворителем помещают в емкость с обратным холодильником и нагревают смесь до кипения. Полученный насыщенный раствор фильтруют в горячем виде, медленно охлаждают до комнатной температуры, затем в холодильнике. Выпадающие в осадок кристаллы отделяют фильтрованием при пониженном давлении. (Органическая химия. /Под ред. Н.А.Тюкавкиной. М. Медицина, 1989, с.405-407).
Известен способ кристаллизации сахара, заключающийся в том, что сахарный раствор, полученный в процессе очистки диффузионного сока сахарной свеклы или тростника, заливают в вакуум-аппарат и выпаривают при низкой температуре (не более 75oC) при глубоком разрежении (Сапронов А.Р. Общая технология сахара и сахаристых веществ. М. Агропромиздат, 1990, с.155).
Известен способ кристаллизации глюкозы, включающий предварительную обработку глюкозных растворов магнитным полем. В результате увеличивается количество кристаллов нормальной формы, что улучшает условия отделения межкристалльного раствора, образуются в большом количестве новые центры кристаллизации. Магнитное поле вызывает перераспределение микрозародышей новой фазы и тем самым влияет на вероятность самопроизвольного зарождения центров кристаллизации. (Жарова Е.Я. Новое в процессе кристаллизации гидратной глюкозы. М. ЦИНТИ Пищепром, 1969, с.32).
Известны также способы кристаллизации глюкозы с применением сухой затравки, добавлением анионного поверхностно-активного химического состава, уменьшающего толщину слоя межкристального раствора и снижающего вязкость утфеля, и другие способы. (Там же, с.31, 34-36).
Известен способ выращивания монокристаллов для получения полупроводников по Чохральскому путем вытягивания из расплава холодной затравкой вне стенок сосуда (Нашевский А.Я. и Гнилов С.В. Расчеты процессов выращивания легированных монокристаллов. М. Металлургия, 1981, с.29-34).
Известен способ получения профилированных поли- и монокристаллов путем вытягивания из расплава с использованием формообразователей, когда рост монокристалла происходит за счет поднятия столба расплава внутри отверстия формообразователя за счет избыточного давления в расплаве либо за счет капиллярных сил. (Получение профилированных монокристаллов и изделий способом Степанова. Л. Наука, 1981, с.13-21, 181-192).
Известен способ получения серебряно-золотого сплава, заключающийся в том, что обработанный шлам смешивают с флюсами (сода, кварц) и восстановителем (кокс, древесный или каменный уголь), подают для перемещения сжатый воздух. Образующийся силикатный шлак спускают, в расплавленный металл добавляют соду и продувают воздухом, при этом образуется содовый шлак в виде теллурита натрия, который также спускают. После доводки получают серебряно-золотой сплав (доре-металл), который направляют на разделение, например электролитическим способом. (Металлургия благородных металлов. /Под ред. Л.В. Чучаева. М. Металлургия, 1987, с.307-309, 315-317).
Эксперименты показали, что как при кристаллизации объемных полупроводников и металлов, так и при росте эпитаксильных слоев наложение радиационного поля, в частности γ-поля, улучшает структуру (уменьшает дефектность), увеличивает однородность распределения примеси и т.д. (Данильченко Б.В. Влияние g-излучения на образование металлических кристаллов и некоторые параметры фазовых превращений металлов и сплавов. Автореф. канд. дис. Киев: Институт физики сплавов АН УССР, 1975).
Любой кристалл, выращиваемый обычными методами без применения специальных выравнивающих приемов, всегда имеет естественное изменение состава и плотности дефектов в объеме. Способы борьбы за постоянство состава кристаллов приведены в книге В.Н.Романенко "Получение однородных полупроводниковых кристаллов", М. Металлургия, 1966.
Ни один из известных способов не позволяет получить вещество со строго постоянным составом без примесей, ухудшающих его качество и чистоту.
Для повышения чистоты и улучшения качества кристаллических веществ и сплавов в способе их получения из газов, растворов, расплавов или веществ в другом кристаллическом или в аморфном состоянии, включающем кристаллизацию и воздействие на энергетическое поле сырьевого вещества энергетическими модулированными потенциалами, последние модулируют в виде ряда, составленного из череды энергоимпульсов, разнящихся между собой абсолютными величинами в следующей последовательности количественных значений X:
14,11,28,19,18,23,19,16,15,18,26,25,19,18,25,20,16,28,15,20,16, 9,35,21,20,27,12,25,20,14,28,17,16,18,15,26,21,19,21,25,18, 15, 27,26,28,24,15,30,23,14,29,15,19,17,12,32,20,14,20,17,20,15,16, 27,21,19,15,20,21,24,20,16,28,21,11,34,23,22,29,15,31,18,10,25, 18,15,17,13,23,20,19,22,18,19,15,25,23,29,21,17,23,20,16,29,18,20, 15,8,35,21,19,21,13,19,16,15,26,19,14,14,
где X базовая абсолютная величина энергоимпульса ±20% при этом длительность энергоимпульса устанавливают превышающей порог чувствительности системы, длительность накопления энергии импульса и интервалы между ними устанавливают не превышающими период затухания возбуждения системы, вызываемого энергоимпульсом, а воздействие энергоимпульсами ведут одновременно с процессом кристаллизации.
Воздействие на энергетическое поле сырьевого вещества производят раздельно одним из излучений или в сочетании с другими, например электрического с магнитным и/или ультразвуковым, и/или ультрафиолетовым, и/или УВЧ, и/или СВЧ, и/или другими излучениями.
Способ реализуют следующим образом.
На емкость с паром, раствором, расплавом или с веществом в другом кристаллическом или аморфном состоянии направляют источник энергопотенциалов, излучающий электроимпульсы и/или магнитоимпульсы, и/или ультразвуковые, и/или другие импульсы, модулированные в следующей последовательности количественных значений X: 14,11,28,19,18,23,19,16,15,18,26,25,19,18,25,20,16,28,15,20,16, 9,35,21,20,27,12,25,20,14,28,17,16,18,15,26,21,19,21,25,18, 15, 27,26,28,24,15,30,23,14,29,15,19,17,12,32,20,14,20,17,20,15,16, 27,21,19,15,20,21,24,20,16,28,21,11,34,23,22,29,15,31,18,10,25, 18,15,17,13,23,20,19,22,18,19,15,25,23,29,21,17,23,20,16,29,18,20, 15,8,35,21,19,21,13,19,16,15,26,19,14,14,
где X базовая абсолютная величина энергоимпульса с допуском ±20% и ведут процесс кристаллизации. Длительность энергоимпульса устанавливают превышающей порог чувствительности системы, а длительность накопления энергии импульса и интервалы между импульсами устанавливают не превышающими период затухания возбуждения системы, вызываемого энергоимпульсом. Продолжительность обработки зависит от количества веществ в емкости, вида вещества (соль, металл), его состояния (пар, раствор, расплав и т.д.).
Пример 1.
Сахарный раствор, полученный путем очистки диффузионного сока сахарной свеклы или тростника, заливают в емкость, к которой подведен излучатель СВЧ-генератора или генератора другого диапазона, и производят обработку энергомагнитными импульсами дозами X=15 Дж/см2 в течение всего времени процесса кристаллизации до его окончания.
Пример 2.
Тигель с поли- и монокристаллами кремния помещают в соленоид, который, в свою очередь, помещают в вакуумную печь, нагревают и доводят кремний до расплава, после чего на соленоид подают электрический ток напряжением в дозе X= 0,5B в виде ряда импульсов и проводят выращивание монокристалла известным способом. Воздействие электроимпульсами ведут до окончания процесса выращивания монокристалла.
Пример 3.
При плавке на серебряно-золотой сплав после смешивания шлама с флюсами (сода, кварц) и восстановления (кокс, древесный или каменный уголь) и слива образовавшегося шлака на тигель с расплавленным металлом воздействуют электромагнитными импульсами дозами X= 20 Дж/см2 посредством СВЧ-генератора, подведенного к тигелю.
Использование предлагаемого способа кристаллизации позволяет улучшить качество и чистоту кристаллов фармацевтических и пищевых веществ, повысить их пищевые, вкусовые и лечебные качества и усвояемость организмом, увеличить сроки хранения. При кристаллизации данным способом изменяется кристаллическая решетка, межмолекулярные связи внутри кристаллов принимают наиболее оптимальные соотношения, которые могут быть в их природе.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ВЫРАЩИВАНИЯ РАСТЕНИЙ, ГРИБОВ И МОРСКИХ СЪЕДОБНЫХ ВОДОРОСЛЕЙ | 1993 |
|
RU2090053C1 |
СПОСОБ ВОЗДЕЙСТВИЯ НА БИОЛОГИЧЕСКИЕ ОБЪЕКТЫ | 1993 |
|
RU2111022C1 |
СПОСОБ РАЗВЕДЕНИЯ И ВЫРАЩИВАНИЯ ЖИВОТНЫХ, ПТИЦ И ЖИВЫХ ВОДНЫХ ОРГАНИЗМОВ | 1993 |
|
RU2090067C1 |
СПОСОБ ВЫРАЩИВАНИЯ КРИСТАЛЛОВ ИЗ ПАРОВОЙ ФАЗЫ | 1993 |
|
RU2041298C1 |
ПОЛИКРИСТАЛЛИЧЕСКИЙ ЛАЗЕРНЫЙ МАТЕРИАЛ | 2010 |
|
RU2431910C1 |
СПОСОБ ВЫРАЩИВАНИЯ БИКРИСТАЛЛОВ ПЕРЕХОДНЫХ МЕТАЛЛОВ | 2009 |
|
RU2389831C1 |
СПОСОБ ПОЛУЧЕНИЯ ТВЕРДОГО ВЕЩЕСТВА ИЗ КРИСТАЛЛИЗУЕМОЙ ЖИДКОСТИ | 2004 |
|
RU2316374C2 |
СПОСОБ ПОЛУЧЕНИЯ КРИСТАЛЛИЧЕСКОГО СЦИНТИЛЛЯТОРА НА ОСНОВЕ САМОАКТИВИРОВАННОГО РЕДКОЗЕМЕЛЬНОГО ГАЛОГЕНИДА | 2021 |
|
RU2762083C1 |
КРИСТАЛЛИЧЕСКИЕ МОДУЛЯТОРЫ ДОБРОТНОСТИ ДЛЯ ЛАЗЕРОВ ВИДИМОГО СПЕКТРАЛЬНОГО ДИАПАЗОНА | 2022 |
|
RU2798465C1 |
СПОСОБ ПОЛУЧЕНИЯ СЦИНТИЛЛЯЦИОННОГО КРИСТАЛЛА И ИЗДЕЛИЙ ИЗ НЕГО | 2022 |
|
RU2783941C1 |
Изобретение относиться к способам получения веществ, элементов и сплавов при выделении их из паров, растворов и расплавов или из веществ в другом кристаллическом или аморфном состоянии, например, при выделении органических соединений, при перекристаллизации, при выплавке черных, цветных и благородных металлов. Для повышения чистоты и улучшения качества кристаллических веществ и сплавов в процессе кристаллизации на энергетическое поле сырьевого вещества воздействуют модулированными потенциалами в виде ряда, составленного из череды энергоимпульсов, разнящихся между собой в определенной последовательности, например: X, 14X, 11X, 28X, 19X, 18X и т.д., где X - базовая абсолютная величина энергоимпульса. Длительность энергоимпульса устанавливают превышающей порог чувствительности системы, а длительность накопления энергии и интервалов между ними устанавливают не превышающими период затухания возбуждения системы, вызываемого энергоимпульсом. Энергоимпульсы направляют на пар, раствор или расплав в период выделения из них веществ путем кристаллизации. 2 з.п. ф-лы.
Воздействие излучения на вещество | |||
/ Сб.трудов физ.фак | |||
Таджиксного университета | |||
- Душанбе, 1982, с.70. |
Авторы
Даты
1997-10-27—Публикация
1994-05-11—Подача