Изобретение относится к способам разделения металлических и неметаллических прутковых, трубчатых, листовых и других материалов на заготовки ломкой и устройствам для их осуществления и может быть использовано в заготовительных отделениях и на участках резки машиностроительных, металлургических, трубопрокатных и других предприятий.
Известен способ холодной ломки проката на мерные заготовки, согласно которому на прокате наносят концентраторы напряжений вмятины, прокат устанавливают на опоры, в плоскости вмятины прикладывают статическую или динамическую изгибающую нагрузку гидравлическим прессом или оборудованием импульсного действия [1]
Известно устройство для ломки материала, содержащее корпус, несущий гидрозажим с ножами для нанесения концентраторов, ломатель с его гидроприводом. Цилиндры зажима и привода ломателя соединены общей магистралью, при этом диаметр цилиндра зажима больше диаметра цилиндра ломателя [2]
Существенным недостатком известных технических решений является неудовлетворительное качество торцев изломов заготовок, особенно при ломке вязких материалов, и невозможность получения любой криволинейной поверхности.
Указанный недостаток является следствием ветвления магистральной (главной) трещины, причиной которой является нанесенный ранее концентратор напряжений, развивающийся в процессе деформации твердого тела.
Изобретение направлено на устранение указанного недостатка и получение качественного излома с необходимыми геометрическими характеристиками.
Это достигается тем, что способ ломки материалов на заготовки в установке для разрушения материала включает нанесение на материал концентраторов напряжений в виде углублений и приложение в его плоскости разрушающей импульсной нагрузки. Для этого материал по границе углубления сначала сжимают усилием до предела упругости, а в зоне образования концентратора напряжений
вмятины до предела пластичности и образования большого волнового сопротивления в пределах действия зажима материала, а затем, не снимая нагрузки, прикладывают к выступающей консольной части материала статическую и импульсную нагрузку с частотой, равной частоте собственных колебаний выступающей части данного материала.
Установка для управляемого технологического разрушения материалов содержит станину с размещенными на ней приводом перемещения ломателя гидрозажимом со вставным твердосплавным инструментом. Диаметр цилиндров гидрозажима выполнен больше диаметра цилиндров привода перемещения лопателя, а их напорные полости сообщены между собой трубопроводом с обратным клапаном. Установка снабжена плитой, связанной с приводом ломателя и размещенным на ней дополнительным ударно-импульсным приводом, на котором установлен ломатель.
Разрушаемый материал установлен на станине и прижимном устройстве. Режущая кромка ломателя образована плоскостью, выполненной параллельно плоскости реза и плоскостью, идущей под острым углом к опоре.
Реактивные усилия, возникающие при ударе в выступающей консольной части материала, демпфируются путем усиления прижима материала за счет выполнения диаметра гидроцилиндра прижимного устройства больше диаметра гидроцилиндров подъемаопускания ударно-импульсного механизма. Предложенная в способе последовательность и сочетание силового нагружения при зажиме и ломке материала приводит к новому положительному эффекту получению качественного излома с необходимыми геометрическими параметрами.
Реализация данного способа возможна исходя из физических законов разрушения материалов, имеющих концентраторы напряжений под воздействием статического и ударного воздействия.
Основным свойством концентраторов напряжений является их способность к развитию в процессе деформации твердого тела. (см.Китайгородский Л.И. Введение в физику. М. Физматгиз, 1959, с.130). При ударе энергия разрушения распространяется в виде волн и гаснет обратно пропорционально кубу расстояния от источника. Трещина растет в потоке упругих волн, распространяющихся в трехмерном пространстве, воздействие которых подчиняется закону суперпозиции. Ветвление трещины наступает тогда (и как следствие, искривление излома), когда в широкой области перед трещиной возникают примерно равные напряжения и трещине безразлично, куда "бежать". Магистральной (главной) трещиной становится та, которая наибольшая и расположена перпендикулярно растягивающим напряжениям.
Поток энергии из объема разрываемого металла подтекает в зону перед трещиной. Интенсивность такого подтекания энергии уменьшается в зависимости от толщины подводящего слоя материала по экспотенциальному закону. Если, например, пруток с одной стороны закреплен консольно и соединен с массой большой толщины, то волна практически не проникает в зажатую часть. В этом случае говорят о бесконечно большом сопротивлении среды (зажим с материалом), когда коэффициент отражения становится равным единице, и отражение происходит с потерей полуволны, что соответствует наличию узла на границе зажима. Развитие концентратора напряжения идет по границе сжатого слоя, так как при вторжении ее в сжатую часть подталкивающая ее упругая энергия растяжения гасится на противоположном упругом поле сжатия. Это все способствует получению нужного качественного излома.
Реактивная сила, возникающая в виде гидроударной волны в гидроцилиндрах прижима ударно-импульсного привода при ударе демпфируется путем направления ее через обратный клапан в напорные полости гидроцилиндров зажима материала, и энергия поглощается при образовании концентратора напряжений пластической деформацией.
На фиг. 1 представлен постадийно способ ломки материалов с использованием в качестве примера деформации среды, создаваемой гидравлическими силами; на фиг. 2 установка для разрушения материалов, общий вид.
Пример осуществления способа ломки материалов.
Ломке по схеме изгиба подвергается установленный выступающий консольной частью и подрезанной на глубину 15 мм прокат сечением 200 х 300 мм из стали 40Х (фиг.1).
а исходное положение материала, установленного консольно длиной, равной заготовке lз в зажимах, выполненных, например, большой толщины t, обладающих большим волновым сопротивлением.
б первая начальная стадия материал сжимается нагрузкой Р сжатия до предела упругости, при этом в месте контакта выступов происходят пластические деформации Δпл, величина которых зависит от параметров выступов.
в вторая стадия нагружение заготовки статической нагрузкой Рc, при этом Рc всегда должна быть меньше Р сжатия, созданной на первой стадии.
г третья заключительная стадия нагружение материала импульсной нагрузкой с частотой, равной частоте собственных колебаний заготовки lз, при этом реактивная сила, возникшая при ударе, используется на дополнительный поджим. На этой стадии на материал действует суммарная совмещенная статическая и резонансная волновая (Ррез) (импульсная) нагрузка,узел волны которой из-за большого волнового сопротивления зажима находится по границе излома.
Установка содержит корпус 1, выполненный в виде основания, соединенного с верхней плитой 2 стяжными колоннами 3. На плите 2 установлены два гидроцилиндра 4 привода перемещения ломателя 5. С гидроцилиндрами 4 связана плита 6, на которой закреплен дополнительный ударно-импульсный привод 7, несущий ломатель 5. Плита 6 установлена с возможностью перемещения в направлении стяжных колонн 3. В основании корпуса 1 выполнена опора 8 для размещения на ней материала 9. В корпусе 1 установлен гидрозажим в виде двух гидроцилиндров 10 и 11 с зажимами 12 и 13, несущими твердосплавные ножи 14. Диаметр D1 цилиндров гидрозажима выполнен больше диаметра D2 цилиндров привода перемещения ломателя 5, а напорные полости гидроцилиндров 4, 10 и 11 сообщены между собой трубопроводом 15 с обратным клапаном 16. На ломателе 5 выполнена режущая кромка, образованная плоскостью 17, параллельной плоскости реза 19, и плоскостью 10, проходящей под острым углом α к плоскости опоры 8.
Установка работает следующим образом.
Разрушаемый материал 9 укладывается на опоре 8 и в гидрозажиме между зажимами 12 и 13 таким образом, что разрушаемый материал имеет выступающую консольную часть с концентратором напряжения 20 в виде углубления. С помощью зажимов 12 и 13 нагружают материал 9 по границе углубления статической нагрузкой до предела упругости. Одновременно твердосплавным ножом 14 зажимов 12 и 13 выполняют вмятины концентраторы напряжений 20. С помощью гидроцилиндров 4 перемещают плиту 6 с ударно-импульсным приводом 7 до соприкосновения ломателя 5 с концентратором напряжения 20 на материале 9 и прикладывают статическую и импульсную нагрузку с частотой, равной частоте собственных колебаний выступающей консольной части материала. В это же время ударная волна рабочей жидкости из напорной полости гидроцилиндра 4 идет по трубопроводу 15 через обратный клапан 16 в гидроцилиндры 10 и 11. За счет того, что диаметр гидроцилиндров 10 и 11 D1 больше диаметра гидроцилиндров 4 D2 достигается гарантированный зажим проката с помощью зажимов 12 и 13 в момент приложения ударноимпульсной нагрузки. После этого разжимают зажимы 12 и 13, а ударно-импульсный привод 7 поднимается в верхнее положение. Установка готова к совершению очередного цикла.
название | год | авторы | номер документа |
---|---|---|---|
УСТАНОВКА ДЛЯ УПРАВЛЯЕМОГО ТЕХНОЛОГИЧЕСКОГО РАЗРУШЕНИЯ МАТЕРИАЛОВ | 1995 |
|
RU2074792C1 |
СПОСОБ ЛОМКИ МАТЕРИАЛА НА ЗАГОТОВКИ | 1995 |
|
RU2074793C1 |
СПОСОБ ЛОМКИ ПРОКАТА | 1991 |
|
RU2025232C1 |
УСТАНОВКА ДЛЯ ЛОМКИ ПРУТКОВЫХ И ТРУБЧАТЫХ МАТЕРИАЛОВ | 1990 |
|
RU2025231C1 |
Установка для раскроя проката | 1991 |
|
SU1775245A1 |
Устройство для разделения проката | 1986 |
|
SU1323256A1 |
Способ ломки проката и устройство для его осуществления | 1976 |
|
SU867469A1 |
Устройство для ломки проката | 1985 |
|
SU1303293A1 |
Способ разделения круглых заготовок | 1989 |
|
SU1773590A1 |
Устройство для разделения проката | 1978 |
|
SU831430A1 |
Использование: изобретение относится к способам разделения металлических и неметаллических материалов на заготовки ломкой проката, устройство для ломки может быть использовано в заготовительных отделениях и на участках резки машиностроительных, металлургических, трубопрокатных и других предприятий. Сущность изобретения: на верхней плите 2 корпуса 1 размещены гидроцилиндры 4 гидропривода перемещения ломателя 5, связанные с плитой 6, несущей дополнительный ударно-импульсный привод 7, на котором размещен ломатель 5. В корпусе 1 размещен гидрозажим материала 9 с твердосплавными ножами 14 для создания концентраторов напряжения 20. Напорные полости цилиндров гидрозажима и привода перемещения ломателя соединены между собой, а в трубопроводе 15 их сообщения размещен обратный клапан 16. Материал 9 размещают на опоре 8 и в гидрозажиме. При зажиме материала и нанесении концентратора напряжения 20 по границе углубления последнего материал сжимают усилением до предела упругости, а в зоне концентратора - до предела пластичности и образования большого волнового сопротивления в пределах действия зажима материала. Импульсную нагрузку на образованную консоль материала прикладывают с частотой, равной частоте собственных колебаний консольной части материала. 2 с. и 3 з. п.ф-лы, 2 ил.
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Способ ломки проката | 1976 |
|
SU578167A1 |
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
Установка для ломки прутков | 1976 |
|
SU583877A1 |
Авторы
Даты
1997-11-20—Публикация
1996-03-21—Подача