Устройство может применятся как в растровой туннельной микроскопии, так и в приборах нанотехнологии, где необходимо автоматическое поддержание туннельного тока и зазора. Особую важность имеет применение данного устройства для многозондовых систем, где необходимо независимое автоматическое управление большим количеством зондов одновременно.
Известна схема управления туннельным током и зазором в микроскопе [1] Она состоит из входного блока преобразователь ток напряжение, вход которого подключен к зонду и образцу, и блока цепи обратной связи, вход которого подключен к выходу входного блока, а выход подключен к пьезопреобразователю. Блок цепи обратной связи состоит из источника опорного напряжения, регулятора для ручной установки напряжения на зазоре, инвертора входного напряжения, подблока сравнения туннельного тока и усиления сигнала рассогласования, аналогового запоминающего устройства, интегратора, фильтра высоких частот Баттерворта, инвертора, высоковольтного усилителя.
В качестве прототипа выбрана схема управления туннельным током и зазором в туннельном микроскопе [2] Блок-схема устройства управления состоит из трех основных составляющих: туннельного промежутка (зонд, образец), электронного блока управления, исполняющего устройства пьезоэлемента. Ввиду сложной амплитудно-частотной характеристики пьезоэлемента (наличие резонансов) к электронному блоку предъявляются достаточно жесткие требования для предотвращения самовозбуждения по петле обратной связи. Электронный блок состоит из активного выпрямителя, логарифмического усилителя, интегратора, инвертирующего усилителя, суммирующего усилителя с высоким возможным выходным напряжением. Данная схема обратной связи является достаточно типичной для аналоговых устройств управления в туннельных микроскопах и обладает рядом недостатков: электронный блок, настроенный для работы с определенным типом пьезоэлементов, должен быть перестроен в случае применения другого типа пьезоэлементов. Конструкция достаточно сложная, содержит большое количество элементов, что снижает ее надежность из-за более высокой вероятности дрейфа параметров или выхода из строя одного из элементов. Применение такой конструкции для многозондовых устройств, где необходимо независимое управление большим количеством зондов, приведет к высокой стоимости, к значительному снижению надежности, увеличению размеров конструкции.
Технической задачей является повышение надежности и устойчивости к самовозбуждению, повышение быстродействия за счет устранения задержек, связанных с переходными процессами во внешнем электронном блоке, а также возможность миниатюризации предлагаемого устройства.
Предлагаются два варианта устройства для управления туннельным током и туннельным зазором, содержащее пьезоэлемент, туннельный зонд, резистор, источник напряжения и клемму для подключения образца.
По варианту 1 эти элементы соединены между собой следующим образом: туннельный зонд жестко закреплен на пьезоэлементе, постоянный резистор подключен параллельно пьезоэлементу, который соединен последовательно с источником напряжения и зондом, при этом взаимное включение пьезоэлемента и источника напряжения осуществлено с учетом полярности обоих элементов, а именно разнополярно, а источник напряжения соединен с клеммой для измеряемого образца.
По варианту 2 туннельный зонд также жестко прикреплен к пьезоэлементу, постоянный резистор, источник напряжения и пьезоэлемент соединены последовательно, образуя замкнутый контур, а зонд и клемма для измеряемого образца, где образуется туннельный зазор, подключены параллельно пьезоэлементу. Взаимное включение пьезоэлемента и источника напряжения осуществлено с учетом полярности этих элементов (однополярно).
По варианту 1 полярность включения источника напряжения и пьезоэлемента разнополярная и такая, что увеличение напряженности на пьезоэлементе приводит к перемещению зонда в направлении от образца, а уменьшение напряжения приводит к перемещению зонда в направлении к образцу.
По варианту 2 полярность включения, а именно однополярное включение, должна быть такой, что увеличение напряжения на пьезоэлементе вызывает перемещение зонда в направлении к образцу, а уменьшение в направлении противоположном. Необходимо подчеркнуть, что и в варианте 1, и в варианте 2 важно именно взаимное включение пьезоэлемента и источника напряжения, т.е. если включение правильное то, при замене полярности включения источника напряжения и пьезоэлемента на противоположное, схема сохраняет работоспособность, а туннельный ток изменит направление.
На фиг. 1 изображена принципиальная схема включения, вариант 1; на фиг. 2 принципиальная схема включения, вариант 2; на фиг. 3 эквивалентная электрическая схема, вариант 1; на фиг.4 эквивалентная электрическая схема, вариант 2.
На фиг. 1 и 2 приняты следующие обозначения: 1 резистор, 2 - пьезоэлемент, 3 зонд, 4 образец, 5 источник напряжения.
На фиг. 3 и 4 приняты обозначения: 6 индуктивность L, 7 эквивалентное сопротивление потерь, 8 электрическая емкость Cк, 9 паразитная емкость пьезоэлемента.
Уравнение, описывающее стационарное состояние системы управления, выглядит так:
где Rо•exp[D-(Uз -Uо)•R] есть сопротивление зазора, а D-(Uз Uо)•R d величина зазора между острием зонда и поверхностью образца;
Uз напряжение на зазоре;
Uп напряжение питания;
Rк величина сопротивления;
R чувствительность пьезоэлемента;
U0 напряжение на зазоре, когда его величина равна нулю;
Ф работа выхода электрона;
Rо сопротивление зазора, когда величина зазора равна нулю;
D величина для отсчета зазора.
Рассмотрим принцип действия устройства, вариант 1.
Резистор 1 и зазор между острием зонда и поверхностью образца образуют делитель напряжения питания. Когда зазор велик, ток отсутствует, напряжение на зазоре равно напряжению питания, а напряжение на пьезоэлементе 2 и резисторе 1 равно 0. При уменьшении зазора напряженность поля возрастает, появляется ток и напряжение на пьезоэлементе 2 и резисторе 1. При этом пьезоэлемент 2 деформируется, отводя зонд на расстояние лишь немногим меньшее, чем то, что проходит образец, и так почти во всей части динамического диапазона, причем напряжение на зазоре Uз практически пропорционально величине зазора d, что следует из теории и хорошо согласуется с экспериментом. После определенного переходного участка зонд 3 начинает мало реагировать на приближение образца 4 и происходит касание.
Для оценки устойчивости и скорости переходных процессов рассмотрены нестационарные уравнения как с учетом резонансов (в приближении пьезоэлемент - пьезорезонатор), так и без учета резонансов с учетом лишь паразитной емкости пьезоэлемента (фиг.3, фиг.4). Анализ уравнений показал, что резонансные свойства пьезоэлемента при таком включении не оказывают большого влияния на устойчивость работы устройства, а это свидетельствует о возможности применения в нем различных типов пьезоэлементов.
Предлагаемое устройство в отличии от аналогов не содержит внешнего электронного блока, благодаря чему образуется система, находящаяся в устойчивом равновесии. Причем при внешнем воздействии, а именно, случайном приближении образца, изменении высоты рельефа при сканировании система переходит в новое устойчивое состояние, при этом зазор изменяется на величину, которая гораздо меньше величины внешнего воздействия.
Варианты устройства отличаются тем, что, если аварийно отключается источник питания во время работы, то в первом варианте зонд может "воткнутся" в образец, а во втором отойдет от образца. Иначе говоря, в первом варианте, чтобы выйти из режима слежения зазора, как и в обычных электронных устройствах слежения, нужно отвести подложку от зонда (или зонд от подложки). Во втором варианте предлагаемого устройства достаточно отключить источник напряжения.
Авторам не известно использование устройств, регулирующих поддержание туннельного зазора и туннельного тока, а именно, обеспечивающих обратную связь в системах управления сканирующим туннельным микроскопом, без использования внешних электронных блоков. Можно сделать вывод, что предлагаемое устройство соответствует критерию изобретательский уровень.
Пример выполнения. Для экспериментальных исследований был собран макет на механической базе туннельного микроскопа с трубчатым пьезоэлементом 2 из заполяризованной керамики ЦТС-19 с чувствительностью 5 нм/В. Игольчатый зонд 3 был изготовлен из вольфрама с применением процесса электрохимического травления. Для оптимальной зависимости параметров работы устройства от Rк использовался постоянный резистор 1 с номиналом 1 МОм. В качестве источника напряжения 5 применялись как стабилизированные блоки питания, так и батареи. Напряжение на зазоре измерялось при помощи как высокого вольтметра, так и при помощи осциллографа. После монтажа конструкции вход в рабочий режим осуществляется следующим образом. Зонд с помощью оптического устройства устанавливается на расстоянии 10 15 мкм от поверхности образца. После этого включается питание как в варианте 1, так и в варианте 2 и начинается плавное сближение зонда и образца с помощью электромеханического привода микроскопа до появления заданного тока, т.е. появления напряжения на пьезоэлементе 2 и резисторе 1 в варианте 1, и напряжения на резисторе 1 в варианте 2. После проведения исследований для выхода из режима в варианте 1 необходимо обязательно отвести подложку перед выключением питания, как в обычных микроскопах, а в варианте 2 можно отключить питание сразу.
Предложенное изобретение имеет широкий спектр применений: а) туннельная микроскопия; б) датчики на туннельном эффекте; в) многозондовые системы для нанотехнологических целей; г) многозондовые системы для устройств сверхплотной записи информации.
Все эти возможные области применения относятся к самым современным и перспективным разделам науки и техники. При этом предлагаемое устройство обладает таким важным преимуществом, как практически максимальной компактностью экономичностью, высокой надежностью, помехозащищенностью из-за отсутствия активных элементов, а также отсутствием задержки на переходных процессах во внешнем электронном блоке. Устройство гораздо дешевле, что опять же очень важно для создания многозондовых устройств.
Литература
1. Трояновский А. М. Цепь обратной связи и управление сканирующим туннельным микроскопом. Приборы и техника эксперимента, 1989, N1, с.165 170.
2. ДиЛелла Д. Уондесс Дж. Коултон Р. Система управления электронным микроскопом с трубчатым пьезопреобразователем. Приборы для научных исследований, 1989, N6, с.15 21. (Rev. Sci. Instrum. 60, N 6, 997 1002).
Устройство для управления туннельным током и зазором содержит источник напряжения, пьезоэлемент, жестко закрепленный на нем зонд и клемму для подключения образца, формирующего совместно с зондом туннельный зазор, отличающееся тем, что устройство дополнительно содержит постоянный резистор, подключенный параллельно пьезоэлементу, включенному между зондом и источником напряжения, подключенным к клемме, при этом полярность включения пьезоэлемента такова, что повышение напряжения на нем обеспечивает перемещение зонда по направлению от образца. 2 с.п. ф-лы, 4 ил.
Трояновский А.М | |||
Цепь обратной связи и управление сканирующим туннельным микроскопом.- Приборы и техника эксперимента, 1989, N 1, с | |||
Устройство для отыскания металлических предметов | 1920 |
|
SU165A1 |
ДиЛелла Д., Уондесс Дж., Коултон Р | |||
Система управления электронным микроскопом с трубчатым пьезопреобразователем.- Приборы для научных исследований, 1989, N 6, с | |||
Прибор для нагревания перетягиваемых бандажей подвижного состава | 1917 |
|
SU15A1 |
Sci | |||
Instrum | |||
v | |||
Способ получения молочной кислоты | 1922 |
|
SU60A1 |
Кухонная терка для корнеплодов и фруктов | 1922 |
|
SU997A1 |
Авторы
Даты
1997-12-27—Публикация
1996-04-26—Подача