СПОСОБЫ ИЗМЕРЕНИЯ ДИФФУЗИИ ПОСРЕДСТВОМ ЯДЕРНОГО МАГНИТНОГО РЕЗОНАНСА (ВАРИАНТЫ) Российский патент 1998 года по МПК G01V3/32 G01N24/08 G01R33/20 

Описание патента на изобретение RU2104565C1

Изобретение относится к измерениям, касающимся буровой скважины, а точенее к измерениям буровой скважины с использованием ядерного магнитного резонанса.

Из патентной литературы известны различные способы для осуществления измерений буровой скважины с применением ядерного магнитного резонанса. Наиболее полезные способы и устройства для осуществления такой технологии описаны в [1] правами на которые обладает правоприемник настоящей заявки. Патент США 4933638 описывает способ, который основан на этом.

Известно выполнение лабораторных испытаний на определение коэффициента самодиффузии в колонках породы, то есть скорости, с которой молекулы материала хаотично перемещаются внутри самого материала. Обеспечение колонок породы для испытаний представляет собой процесс, требующий больших затрат средств и времени, поэтому он непригоден для взятия образцов из скважины большой протяженности.

[1] рассматривает измерения скважинного ЯМР, использующие постоянный магнит, статическое магнитное поле которого проявляет градиент, являющийся функцией расстояния до магнита. [1] не рассматривает использование отдельно прикладываемого градиента магнитного поля с независимой регулировкой параметров в дополнение к статического магнитному полю.

В изобретении делается попытка создать способ и устройства для выполнения с помощью ядерного магнитного резонанса измерений в буровой скважине коэффициента самодиффузии и присущего времени поперечной релаксации.

Итак, согласно предпочтительного варианту осуществления изобретения создан способ выполнения измерений, касающихся буровой скважины, с помощью ядерного магнитного резонанса, включающий в себя стадии создания градиента магнитного поля в желаемом месте вдоль буровой скважины, осуществления по меньшей мере одного, а предпочтительно двух или более экспериментов с применением ядерного магнитного резонанса при наличии градиента магнитного поля, восприятия диффузионного эффекта при затухании по меньшей мере первого эхо-сигнала, и определения из него коэффициента диффузии.

Согласно одному из вариантов осуществления изобретения градиент магнитного поля постоянен по времени. Как вариант, может быть обеспечен выключаемый градиент магнитного поля.

Согласно одному из вариантов осуществления изобретения стадия выполнения по меньшей мере одного эксперимента с применением ядерного магнитного резонанса включает в себя осуществление двух экспериментов с применением ядерного магнитного резонанса, так что они отличаются по меньшей мере одним из следующих параметров:
1. временем, в течение которого обеспечивается возможность диффузии молекул;
2. величиной градиента магнитного поля;
3. временем, в течение которого прилагаются импульсы, если используются импульсы напряженности магнитного поля.

Точнее, два эксперимента могут отличаться друг от друга только интервалами между эхо-сигналами. В таком случае T2 (время поперечной релаксации) и D (коэффициент диффузии) могут быть получены из измеренных амплитуд и скоростей затухания.

Как вариант, когда градиенты постоянны и сами по себе представляют собой функцию силы магнитного поля, два эксперимента могут отличаться по применяемой высокой частоте. Различие по частоте сопровождается изменением величины градиента магнитного поля.

При расширении описанного способа может выполняться более двух таких экспериментов. Результаты повторных экспериментов после этого могут быть проинтегрированы и усреднены для повышения отношения сигнала к шуму, при этом два или более различных эксперимента могут быть использованы для вычисления коэффициента диффузии и времени T2 поперечной релаксации.

При другом расширении несколько таких экспериментов могут быть объединены в один эксперимент путем выдачи всех требуемых данных из сигналов одного возбуждения. Это может быть выполнено путем изменения упомянутых параметров в течение одной последовательности. В качестве иллюстративного примера: первые несколько эхо-сигналов отстоят друг от друга на один фиксированный интервал времени, следующие несколько эхо-сигналов - на другой интервал и т.д.

Единый эксперимент с фиксированными параметрами, такими как интервал между эхо-сигналами, величина градиента магнитного поля и продолжительность может быть осуществлен для установления верхней границы значения коэффициента диффузии, нижней границы T2 или каждого T2 для D, когда одна из этих величин известна.

Согласно предпочтительному варианту осуществления изобретения коэффициент диффузии D может быть применен для определения по меньшей мере одного из следующих нефтефизических параметров:
селективность вода/углеводород;
уровень насыщения водой и углеводородом;
проницаемость;
размер пор и распределение пор по размеру;
вязкость нефти.

фактор F вида формации, который представляет собой меру среднего повышения электрического удельного сопротивления вследствие извилистости формации;
q - мерное изображение формации.

Согласно варианту осуществления изобретения создано устройство для измерений, касающихся буровой скважины, с помощью ядерного магнитного резонанса, содержащее:
устройство для создания градиента магнитного поля в желаемом месте вдоль буровой скважины;
устройство для проведения по меньшей мере одного эксперимента при наличии градиента магнитного поля;
устройство для восприятия диффузионного эффекта при затухании по меньшей мере первого эхо-сигнала;
устройство для определения коэффициента диффузии из указанного восприятия.

Согласно варианту осуществления изобретения также создано устройство для выполнения измерений, касающихся буровой скважины, с применением ядерного магнитного резонанса, которое содержит:
устройство для применения статического магнитного поля для поляризации ядерных сигналов в материале в данной зоне буровой скважины, тем самым создается намагниченность объема в зоне, представляющий интерес;
устройство для применения поля высокой частоты в зоне, представляющей интерес, с заданными частотой, длительностью и модулем с тем, чтобы обеспечить нахождение по меньшей мере части вектора намагниченности в горизонтальной плоскости, определяемой относительно плоскости буровой скважины;
устройство для применения фиксированного градиента магнитного поля в зоне, представляющей интерес, вызывая тем самым диффузию атомов и молекул материала в упомянутой зоне;
устройство для применения рефокусирующего импульса высокой частоты в зоне, представляющей интерес;
устройство, предназначенное для того, чтобы вновь применить фиксированный градиент магнитного поля в зоне, представляющей интерес, вызывая тем самым диффузию атомов и молекул материала в упомянутой зоне;
устройство для получения спинового эхо-сигнала посредством ядерного магнитного резонанса;
устройство для получения коэффициента диффузии D или затухания T2 спиновых эхо-сигналов из амплитуд эхо-сигнала.

Согласно варианту осуществления изобретения также создано устройство для проведения измерений, касающихся буровой скважины, с применением ядерного магнитного резонанса, содержащее:
устройство для применения статического магнитного поля с целью поляризации ядерных спинов в материале в данной зоне буровой скважины, создавая намагничивание объема в зоне, представляющей интерес;
устройство для применения поля высокой частоты в зоне, представляющей интерес, с выбранными частотой, длительностью и модулем для обеспечения того, чтобы по меньшей мере часть вектора намагничивания лежала в горизонтальной плоскости, определяемой относительно плоскости буровой скважины;
устройство для применения включаемого по времени градиента магнитного поля в зоне, представляющей интерес, вызывая тем самым диффузию атомов и молекул материала в упомянутой зоне;
устройство для применения рефокусирующего импульса высокой частоты в зоне, представляющей интерес;
устройство, предназначенное для того, чтобы вновь применить фиксированный градиент магнитного поля в зоне, представляющей интерес, чтобы тем самым вызвать диффузию атомов и молекул материала в упомянутой зоне;
устройство для получения спинового эхо-сигнала посредством ядерного магнитного резонанса;
устройство для получения коэффициента D диффузии или затухания T2 спиновых эхо-сигналов из амплитуд эхо-сигналов.

Описанные способы пригодны для использования в условиях отличающихся от условий буровой скважины, и с материалами, отличающимися от материалов буровой скважины. Способы обладают преимуществом, заключающимся в том, что испытуемый материал может находиться снаружи от испытательного устройства.

На фиг. 1 представлена блок-схема, иллюстрирующая устройство для определения коэффициента диффузии в буровой скважине в соответствии с предпочтительным вариантом осуществления изобретения, когда градиент магнитного поля постоянен по времени; на фиг.2 - блок-схема, иллюстрирующая устройство для определения коэффициента диффузии в буровой скважине согласно альтернативного варианту осуществления изобретения, в котором имеет место пульсация градиента магнитного поля; на фиг. 3 и 4 - соответственно импульсы высокой частоты и эхо-сигналы, а также последовательности градиента магнитного поля, которые используются согласно одному из вариантов осуществления изобретения; на фиг. 5 и 6 - соответственно импульсы высокой частоты и эхо-сигналы, а также последовательности градиента магнитного поля, которые используются согласно одному из вариантов осуществления изобретения.

Если теперь обратиться к фиг.1, то она в относительно общем виде иллюстрирует устройство для определения коэффициента диффузии в буровой скважине посредством ядерного магнитного резонанса согласно предпочтительному варианту осуществления изобретения. Устройство включает в себя первую часть 6, которая располагается так, чтобы ее можно было опускать в буровую скважину 7, имеющую продольную ось 8, с тем чтобы исследовать природу материалов в непосредственной близости от буровой скважины, лежащих в зоне 9 в целом цилиндрической конфигурации, отстоящей от буровой скважины и окружающей ее.

Первая часть 6 предпочтительно содержит в целом цилиндрический постоянный магнит 10, предпочтительно имеющий круглое поперечное сечение и расположенный вдоль продольной оси 11, которая предпочтительно соосна с продольной осью 8 буровой скважины. Согласно альтернативному варианту осуществления изобретения может быть применено большое количество постоянных магнитов 10. По ходу описания один или более постоянных магнитов 10 будут рассматриваться совместно и упоминаются как постоянный магнит 10, а их общая продольная ось будет указываться как продольная ось 11.

Первая часть 6 также содержит одну или более катушечные обмотки 16, которые предпочтительно расположены на поверхности постоянного магнита, так что каждый виток катушки лежит в плоскости, фактически параллельной плоскости, содержащей ось намагничивания 12 постоянного магнита и продольную ось 11. Точнее, ось 13 катушечных обмоток 16 фактически перпендикулярна как продольной оси 11 буровой скважины, так и оси намагничивания 12 постоянного магнита.

Постоянный магнит 10 и катушечные обмотки 16 предпочтительно заключены в неэлектропроводящий, неферромагнитный защитный корпус 18. Корпус и его содержимое далее будут упоминаться как зонд 19.

Катушечные обмотки 16 совместно с согласующей цепью 20 передатчика/приемника образуют цепь передатчика/приемника. Согласующая цепь 20 передатчика/приемника обычно включает в себя конденсатор резонанса, переключатель передатчика/приемника, а также согласующую электрическую схему для передатчика и приемника и подсоединена к усилителю 24 мощности высокой частоты и к предварительному усилителю 26 приемника.

Все из описанных элементов обычно содержатся в корпусе 28, который проходит через буровую скважину. Как вариант, некоторые из указанных элементов могут и не содержаться в корпусе 28 и могут находиться над поверхностью грунта.

То, что обозначено блоком 30, представляет собой электрическую схему управления для устройства, предназначенного для каротажа, включающую в себя компьютер 32, который создает управляющий выходной сигнал к пульсационному программирующему устройству 34, которое принимает входной сигнал высокой частоты от источника 36 переменной высокой частоты. Пульсационное программирующее устройство 34 управляет работой источника 36 переменной высокой частоты, а также приводом 38 высокой частоты, который принимает входной сигнал от источника 36 переменной высокой частоты и выдает сигнал к усилителю 24 мощности высокой частоты.

Выходной сигнал предварительного усилителя 26 приемника высокой частоты подается к приемнику 40 высокой частоты, который принимает входной сигнал от устройства 44 для сдвига по фазе. Устройство 44 для сдвига по фазе принимает входной сигнал от источника 36 переменной высокой частоты. Приемник 40 выдает сигнал через аналого-цифровой преобразователь с буфером 46 к компьютеру 32 для обеспечения желаемых выходных данных при каротаже скважины для дальнейшего использования и анализа.

Некоторые или все из элементов, описанных выше как находящихся в блоке 30, предпочтительно располагаются в скважине. Как вариант, такие элементы могут быть расположены в корпусе, находящемся над поверхностью грунта.

Если теперь обратиться к фиг. 2, то на нем в относительно общем виде представлено устройство для определения коэффициента диффузии в буровой скважине посредством ядерного магнитного резонанса согласно альтернативному предпочтительному варианту осуществления изобретения. Устройство включает в себя первую часть 106, которая располагается таким образом, чтобы опускаться в буровую скважину 107, с тем чтобы исследовать природу материалов вблизи от буровой скважины.

Первая часть 106 содержит магнит или большое количество магнитов 108, которые создают предпочтительно фактически однородное статическое магнитное поле в объеме исследования 109. Первая часть 106 также содержит катушечную антенну 116 высокой частоты, которая создает магнитное поле высокой частоты в объеме исследований 109, причем это поле фактически перпендикулярно статическому магнитному полю.

Катушка для градиента магнитного поля либо большое количество катушек 110 создают градиент магнитного поля в объеме исследования 109. Это дополнительное содействие магнитному полю имеет направление, предпочтительно коллинеарное с фактически однородным полем и имеет фактически равномерный градиент магнитного поля, который может или не может быть включен и выключен подачей постоянного тока, текущего через катушку или катушки 110. Магнит или магниты 108, антенна 116 и катушка 110 напряженности, образующие часть 106, также указываются, как зонд.

Антенна совместно с согласующей цепью 120 передатчика/приемника обычно включает в себя конденсатор резонанса, переключатель передатчика/приемника и согласующую электрическую схему для переключателя и приемника, и подсоединена к усилителю 124 мощности высокой частоты и предварительному усилителю 126 приемника.

Источник энергии 129 создает постоянный ток, требуемый для катушек 110 генерации градиента магнитного поля.

Все описанные элементы обычно располагаются в корпусе 128, который проходит через буровую скважину. Как вариант, некоторые из указанных элементов могут быть расположены выше поверхности грунта.

То, что указано в блоке 130, представляет собой электрическую схему управления для устройства, предназначенного для каротажа, которая в целом может быть идентична схеме, описанной применительно к блоку 30 в связи с вариантом осуществления согласно фиг. 1A, с добавлением пульсационного программирующего устройства 146.

Пульсационное программирующее устройство 146 управляет источником 129 питания катушек градиента, обеспечивающим или не обеспечивающим течение тока, а следовательно создание градиента поля в соответствии с командами компьютера 32.

Некоторые или все из упомянутых элементов, располагаемых в корпусе, находящемся над поверхностью грунта, вместо этого могут быть расположены ниже поверхности грунта.

Если теперь обратиться к фиг. 3 и 4, то на них соответственно представлены импульсы высокой частоты и эхо-сигналы, а также последовательности градиента магнитного поля, которые используются согласно одному из вариантов осуществления изобретения. В этом варианте изобретения имеют место следующие рабочие стадии:
1. прилагается статическое магнитное поле для поляризации ядерных спинов в материале в заданной зоне буровой скважины, обеспечивая тем самым намагничивание объема в зоне, представляющей интерес. Поле и обеспечиваемое таким образом коллинеарное намагничивание определяют вертикальное направление;
2. к зоне, представляющей интерес, прилагается градиент магнитного поля. Это обладающее градиентом поле может либо не может быть частью статического магнитного поля первой стадии;
3. поле высокой частоты прилагается к зоне, представляющей интерес, с предварительно выбранной частотой, длительностью и модулем, чтобы заставить по меньшей мере часть вектора намагниченности лежать в горизонтальной плоскости, определяемой по отношению к вертикальной оси;
4. устанавливается интервал времени t, в течение которого атомы и молекулы материала в зоне, представляющей интерес, могут диффундировать внутри магнитного поля с фиксированной напряженностью;
5. рефокусирующий импульс высокой частоты прилагается к зоне представляющей интерес;
6. повторяется стадия 4;
7. выдается спиновый эхо-сигнал посредством ядерного магнитного резонанса;
8. из амплитуды эхо-сигнала получается коэффициент диффузии D либо его верхняя граница или затухание T2 спинового эхо-сигнала, либо его нижняя граница;
9. по меньшей мере один раз повторяются стадии с 1 по 7 с различными t или величиной градиента магнитного поля;
10. из амплитуд эхо-сигналов некоторых или всех экспериментов получаются D и/или T2.

Понятно, что стадии с 4 по 7 могут последовательно повторяться много раз, с тем чтобы получить достаточно длинную амплитудную последовательность эхо-сигналов, откуда более выразительно может быть получено время поперечной релаксации.

Кроме того можно оценить, что стадия 8 не требуется, если как D, так и T2 неизвестны и не могут рассматриваться как оказывающие влияние на скорость затухания. Стадия 9 и 10 не требуются, если величина D или T2 известны. В этом случае неизвестные T2 или D могут быть получены из одного эксперимента. Подобным же образом требуется не более одного эксперимента, когда известно, что D или T2 оказывают существенное влияние на затухание амплитуды эхо-сигнала.

Также можно оценить преимущество повторения эксперимента и интегрирования показаний измерений с тем, чтобы получить достаточно обоснованные и выразительные результаты.

Также понятно, что стадия 5, как вариант, может быть заменена применением двух или более импульсов, комбинированное действие которых состоит в рефокусировке ядерных спинов с выдачей стимулированного эхо-сигнала на стадии 7 и обеспечением большего времени для диффузии между этими импульсами.

Если теперь обратиться к фиг. 5 и 6. то на них соответственно представлены импульсы высокой частоты и эхо-сигналы, а также последовательности градиента магнитного поля, которые применяются согласно другому варианту изобретения. В этом варианте осуществления изобретения имеют место следующие рабочие стадии:
1. описанная стадия 1;
2. описанная стадия 3;
3. подается выключаемый по времени импульс градиента магнитного поля, в течение которого в зоне, представляющей интерес, могут диффундировать атомы и молекулы материала. Типичные амплитуда, длительность и частота импульса составляют 0,1-30 G/см за 0,1-10 мс;
4. описанная стадия 5;
5. повторение стадии 3;
6. описанная стадия 7;
7. получение из амплитуд эхо-сигналов коэффициента диффузии D либо его верхней границы или затухания T2 спинового эхо-сигнала, либо его нижней границы;
8. повторение стадий с 1 по 6 с различными значениями по меньшей мере для одной из следующих переменных: величины градиента магнитного поля на стадиях 3 и 5; длительности градиента магнитного поля на стадиях 3 и 5; синхронизации на стадиях 3, 4, 5 и 7;
9. получение коэффициента диффузии и/или T2 из данных, полученных посредством ядерного магнитного резонанса.

Можно оценить, что стадии с 3 по 6 могут быть последовательно повторены большое количество раз для того, чтобы получить достаточно длинную последовательность амплитуд эхо-сигналов, откуда более выразительно может быть определено время поперечной релаксации.

Кроме того, можно оценить и то, что стадия 7 не требуется, если как D, так и T2 неизвестны и не могут рассматриваться как оказывающие влияние на скорость затухания. Стадии 8 и 9 не требуются, если известно значение D или T2. В этом случае неизвестные T2 или D могут быть получены из одного эксперимента. Подобным же образом требуется не более одного эксперимента, когда известно, что D или T2 оказывают существенное влияние на затухание амплитуды эхо-сигнала.

Также можно оценить и то, что может быть использована иная зависимость по времени градиента магнитного поля, чем квадратичный импульс согласно фиг. 6. Точнее, когда производится выключение пульсационного градиента, нет необходимости в уменьшении величины градиента и могут быть применены синусоидальные и другие зависимости.

Кроме того, можно оценить преимущество повторяющегося эксперимента и интегрирование показаний измерений для получения обоснованных и выразительных результатов.

Также понятно, что стадия 4, как вариант, может быть заменена применением двух или более импульсов, комбинированным действием которых является рефокусирование ядерных спинов с выдачей стимулированного эхо-сигнала на стадии 6 и обеспечением большего времени для диффузии между этими импульсами.

Девиация коэффициента диффузии D может осуществляться посредством использования следующих уравнений для случая постоянного градиента.

an = Ae-nte(1/T2+D(ГGte)2/12)
или для случая пульсационного градиента
an= Ae-n(te/T2+D(ГGδ)2(delta-δ/2)) ,
где A - величина сигнала при te _→ 0 или нулевом времени. A может быть известна, но может и не быть известна;
n - количество эхо-сигналов;
an - измеренная амплитуда;
te - внутренний интервал эхо-сигналов, применяемый экспериментатором;
T2 - характерное время поперечной релаксации жидкости при местных физических и химических условиях; T2 либо может, либо не может быть известно до измерений;
D - коэффициент диффузии жидкости при местных условиях. D либо может, либо не может быть известен до измерений;
Г - гиромагнитное отношение излучаемого изотопа (2 π•х4,26 КГц/Гаусс для водорода);
G - величина градиента магнитного поля, прилагаемая в исследуемом объеме при проведении эксперимента, G известна;
δ - длительность импульса градиента магнитного поля, дельта - время между двумя импульсами градиента магнитного поля, которые предшествуют каждому эхо-сигналу.

Рассматриваются четыре случая.

1. Два из трех параметров жидкости в исследуемом объеме - A, T2 и D - известны. Тогда из приведенных уравнений может быть получен третий параметр. Например, если A и T2 известны и измерена амплитуда a1 первого эхо-сигнала, то для постоянного градиента
D = [-te/T2-ln(a1/A]•12/(ГG)2te3
Большое количество эхо-сигналов, а также повторяемые измерения могут повысить статистическую достоверность результатов.

2. Амплитуда A известна ни T2, ни D не известны и установлена только верхняя границы для D и/или нижняя граница для T2. Верхняя граница для D получается из указанных уравнений посредством замены выражения te/T2 на ноль. Нижняя граница для T2 получается путем принятия D = 0. Такие границы могут быть весьма полезны в ряде случаев, например при выделении углеводорода из воды на основе D либо T2 или при выделении легкой фракции из тяжелой нефти.

3. A известно или не известно, но это не представляет интереса. Записывается несколько эхо-сигналов и вычисляется явная скорость затухания. Например, в случае постоянного градиента явное время поперечной релаксации составляет:
T(явн)2

= [1/T2+D(ГGte)2/12]-1
Это получается из наиболее подходящего процесса измерения амплитуд an эхо-сигналов для их представления:
an = Ae-лс
где: C = te/T(явн)2
, в котором T(явн)2
является подбираемым параметром.

Как вариант, посредством деления всех амплитуд на одну из амплитуд эхо-сигналов, например a1, полученные отношения в первой части будут представлены следующим образом:
an/ai= exp[-(nte-te)/T(явн)2

]
A выносится за скобки, а D и T2 или каждая из их границ могут быть получены из упомянутого уравнения, касающегося T(янв)2
, T2 и D. Вновь верхняя граница для D получается при принятии 1/T2 равным нулю и решением для D, а нижняя граница для T2 получается при принятии D, равным нулю.

Как вариант, T2 или D, либо каждая из их границ, могут быть получены при повторении одного и того же эксперимента по меньшей мере дважды, изменяя один или более из следующих параметров: te, G, дельта или δ .

4. Если D и T2 известны, а упомянутые границы представляют собой несущественные приближения, очевидно время релаксации должно быть вычислено по меньшей мере дважды для двух экспериментов, отличающихся по меньшей мере одним из следующих параметров: te, G, дельта или δ . В тех случаях, что и предпочтительный вариант осуществления этого изобретения, для которого градиент G также является функцией силы поля, а следовательно функцией резонансной частоты, достаточны два или более эксперимента, отличающиеся резонансной частотой.

Удобно, хотя и необязательно переписать соотношение между T(явн)2

, T2 и D в виде следующего выражения:

Уравнение для R2 и D представляет собой линейное управление, например:
R(явн)2
= R2+D(Гte2)/12
для варианта осуществления с фиксированным градиентом. Два или более отличающихся эксперимента позволяют получить группу из двух или более линейных уравнений для T2 и D, имеющих различные величины R(явн)2
. Из этой группы из двух или более уравнений T2 и D могут быть получены либо точным решением двух линейных уравнений, выдающих значения двух неизвестных, либо наилучшим образом (например, посредством наименьших квадратов) группой из трех или более отличающихся экспериментов.

Можно оценить, что несколько экспериментов описанного типа могут быть объединены в один эксперимент путем выдачи всех требуемых данных из сигналов от одного возбуждения. Это может выполняться посредством изменения упомянутых параметров в течение одной последовательности. Например, первые несколько эхо-сигналов отстоят через один фиксированный интервал времени, несколько последующих через другой интервал и т.д.

Понятно, что изобретение не ограничено тем, что конкретно указано и описано выше. Объем изобретения определяется только формулой изобретения, которая приведена ниже.

Похожие патенты RU2104565C1

название год авторы номер документа
ИНТЕГРАЦИЯ ВО ВРЕМЕННОМ ИНТЕРВАЛЕ ДАННЫХ ПОСЛЕДОВАТЕЛЬНОСТЕЙ ЭХО-СИГНАЛОВ ПРИ РАЗЛИЧНЫХ ЗНАЧЕНИЯХ ГРАДИЕНТА И ВРЕМЕНИ МЕЖДУ ЭХО-СИГНАЛАМИ 2004
  • Чэнь Сунхуа
RU2354989C2
J-СПЕКТРОСКОПИЯ В СТВОЛЕ СКВАЖИНЫ 2003
  • Шпайер Петер
RU2350985C2
СПОСОБ И УСТРОЙСТВО ДЛЯ ИСПОЛЬЗОВАНИЯ ЯДЕРНО-МАГНИТНЫХ РЕЗОНАНСНЫХ ИЗМЕРЕНИЙ С ГРАДИЕНТАМИ ИМПУЛЬСНОГО ПОЛЯ ДЛЯ ОПРЕДЕЛЕНИЯ ХАРАКТЕРИСТИК ФЛЮИДОВ В СКВАЖИННОМ КАРОТАЖНОМ ПРИБОРЕ ДЛЯ ОТБОРА ПРОБ ФЛЮИДОВ 2005
  • Фридман Роберт
RU2377609C2
СПОСОБ АНАЛИЗА ДАННЫХ С ОБЩИМИ И РАЗЛИЧАЮЩИМИСЯ СВОЙСТВАМИ 2007
  • Хитон Николас Дж.
  • Ла Винь Джек А.
  • Хайдлер Ральф
  • Бахман Генри Н.
RU2432587C2
ОЦЕНКА ПЛАСТОВ С ИСПОЛЬЗОВАНИЕМ КАРОТАЖНЫХ ИЗМЕРЕНИЙ МЕТОДОМ МАГНИТНОГО РЕЗОНАНСА 1999
  • Фридман Роберт
RU2229594C2
СПОСОБЫ ИНТЕРПРЕТАЦИИ ДИФФУЗИОННЫХ-Т2 КАРТ, ПОЛУЧЕННЫХ С ИСПОЛЬЗОВАНИЕМ ЯМР ДАННЫХ 2004
  • Мин Чен Као
  • Хитон Николас Дж.
RU2378668C2
ЯМР СПЕКТРОСКОПИЯ С ИСПОЛЬЗОВАНИЕМ СРЕДСТВА ЯМР С ГРАДИЕНТНЫМ ПОЛЕМ 2003
  • Кришнамурти Ганесан
RU2251097C2
СПОСОБ ОПРЕДЕЛЕНИЯ ХАРАКТЕРИСТИКИ ПОРИСТОЙ ПОДЗЕМНОЙ ФОРМАЦИИ 1995
  • Ридван Аккурт
  • Пьер Назарет Тутуньян
  • Харолд Дж. Вайнегар
RU2134894C1
СПОСОБ ИЗМЕРЕНИЯ СКОРОСТИ ПОТОКА МНОГОФАЗНОГО ФЛЮИДА ПРИ ПОМОЩИ РЕГИСТРАЦИИ СИГНАЛА ЯДЕРНОГО МАГНИТНОГО РЕЗОНАНСА (ЯМР) И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2010
  • Ягудин Шамил Габдулхаевич
  • Харитонов Руслан Радикович
  • Скирда Владимир Дмитриевич
  • Тагиров Мурат Салихович
  • Шкаликов Николай Викторович
  • Попов Владимир Иванович
  • Ибрагимов Асхат Ахбабович
RU2427828C1
ХИМИЧЕСКИ ИЗБИРАТЕЛЬНОЕ УСТРОЙСТВО ФОРМИРОВАНИЯ ИЗОБРАЖЕНИЙ ДЛЯ ФОРМИРОВАНИЯ ИЗОБРАЖЕНИЙ ФЛЮИДА В ПОДЗЕМНОМ ПЛАСТЕ И СПОСОБ ЕГО ИСПОЛЬЗОВАНИЯ 2017
  • Аппель Матиас
  • Энгер Бенджамин Чарлз
  • Де Йонг Хилко
  • Глэдден Линн Фейт
  • Мэнтл Майкл Дэвид
  • Седерман Эндрю Джон
  • Рэмскилл Николас Филип
RU2736931C2

Иллюстрации к изобретению RU 2 104 565 C1

Реферат патента 1998 года СПОСОБЫ ИЗМЕРЕНИЯ ДИФФУЗИИ ПОСРЕДСТВОМ ЯДЕРНОГО МАГНИТНОГО РЕЗОНАНСА (ВАРИАНТЫ)

Использование: изобретение относится к измерениям, касающимся буровой скважины, а точнее к измерениям буровой скважины с использованием ядерного магнитного резонанса. Сущность изобретения: способы измерений включают в себя приложение статического магнитного поля с заранее выбранными параметрами в заданной области скважины, приложение высокочастотного поля с заранее выбранной частотой, длительностью и величиной и записи параметров по меньшей мере одного эхо-сигнала. Согласно одному из вариантов перед приложением высокочастоного поля прикладывают фиксированный градиент магнитного поля, согласно другому варианту - импульсный градиент магнитного поля. Определяют коэффициент диффузии из записанных параметров эхо-сигнала. 3 с. и 12 з.п. ф-лы, 6 ил.

Формула изобретения RU 2 104 565 C1

1. Способ проведения скважинных измерений ядерного магнитного резонанса (ЯМР), предусматривающий при каждом измерении приложение статического магнитного поля с заранее выбранными параметрами для поляризации ядерных спинов в веществе в заданной области скважины, что создает объемное намагничивание этой области и приложение к этой области высокочастотного поля с заранее выбранной частотой, длительностью и величиной для обеспечения того, чтобы по меньшей мере часть намагничивания лежала в плоскости, практически перпендикулярной к направлению статического магнитного поля, для того, чтобы генерировать по меньшей мере один эхо-сигнал, и запись параметров по меньшей мере одного эхо-сигнала, отличающийся тем, что осуществляют 1) перед приложением высокочастотного поля приложение фиксированного градиента магнитного поля с заранее выбранными параметрами для этой области, что позволяет атомам и молекулам в этой области рассеиваться в поле градиента, 2) приложение к этой области перефокусированного высокочастотного импульса, 3) получение спинового эхо-сигнала ЯМР со связанной амплитудой аn эхо-сигнала и 4) получение коэффициента D диффузии и/или времени Т2 обратной релаксации из амплитуды эхо-сигнала и заранее выбранных параметров статического магнитного поля высокочастотного поля и градиента магнитного поля с использованием выражения

где G величина градиента магнитного поля;
te межэховый промежуток;
A величина эхо-сигнала в нулевой момент времени;
n число эхо-сигналов;
Т2 время обратной релаксации текучей среды;
D коэффициент диффузии текучей среды;
Г гиромагнитный коэффициент изучаемого изотопа (2π•4,26 кГц/Гc для водорода).
2. Способ по п.1, отличающийся тем, что повторяют операции 2) и 3) для получения множества эхо-сигналов и для получения из них величин Т2 и/или D.
3. Способ проведения скважинных измерений ЯМР, предусматривающий при каждом измерении приложение статического магнитного поля с заранее выбранными параметрами для поляризации ядерных спинов в веществе в заданной области скважины, что создает объемное намагничивание этой области, и приложение к этой области высокочастотного поля с заранее выбранной частотой, длительностью и величиной для обеспечения того, чтобы по меньшей мере часть намагничивания лежала в плоскости, практически перпендикулярной к направлению статического магнитного поля, для того, чтобы генерировать по меньшей мере один эхо-сигнал, и запись параметров по меньшей мере одного эхо-сигнала, отличающийся тем, что осуществляют 1) приложение импульсного градиента магнитного поля с заранее выбранными параметрами к этой области, что позволяет атомам и молекулам в этой области рассеиваться в поле градиента, 2) приложение к этой области перефокусированного высокочастотного импульса, 3) повторение операции 1), 4) получение спинового эхо-сигнала ЯМР со связанной амплитудой аn эхо-сигнала, и 5) получение коэффициента D диффузии и/или времени Т2 обратной релаксации из амплитуды эхо-сигнала и заранее выранных параметров статического магнитного поля, высокочастотного поля и градиента магнитного поля с использованием выражения

где G величина градиента магнитного поля;
te межэховый промежуток;
A величина эхо-сигнала в нулевой момент времени;
n число эхо-сигналов;
аn измеренная амплитуда эхо-сигнала;
Т2 время обратной релаксации текучей среды;
D коэффициент диффузии текучей среды;
Г гиромагнитный коэффициент изучаемого изотопа (2π•4,26 кГц/Гc для водорода);
δ -длительность импульса градиента магнитного поля;
delta время между двумя следующими друг за другом импульсами градиента магнитного поля.
4. Способ по п. 3, отличающийся тем, что повторяют операции 1) 4) для получения множества эхо-сигналов и для получения из них величин Т2 и/или D. 5. Способ по п.1 или 2, отличающийся тем, что изменяют по меньшей мере один из следующих параметров: 1) время te межэхового промежутка и 2) прикладываемую высокую частоту. 6. Способ по п.3 или 4, отличающийся тем, что изменяют по меньшей мере один из следующих параметров: 1) временной период, в течение которого прикладывают градиент магнитного поля, 2) промежуток между двумя следующими друг за другом приложениями градиента магнитного поля, 3) величину градиента магнитного поля, 4) время te межэхового промежутка и 5) прикладываемую высокую частоту. 7. Способ по п.1 или 2, отличающийся тем, что выполняют два или более измерения ЯМР для получения набора по меньшей мере из двух линейных уравнений для неизвестных параметров определяющего выражения. 8. Способ по п.3 или 4, отличающийся тем, что выполняют два или более измерения ЯМР для получения набора по меньшей мере из двух линейных уравнений для неизвестных параметров определяющего выражения. 9. Способ по п.7, отличающийся тем, что указанные два или более измерений ЯМР отличаются по меньшей мере одним из следующих параметров: 1) временем te межэхового параметра, 2) величиной G градиента магнитного поля и 3) частотой прикладываемого высокочастотного поля. 10. Способ по п.8, отличающийся тем, что указанные два или более измерения ЯМР отличаются по меньшей мере один из следующих параметров: 1) временем te межэхового промежутка, 2) величиной G градиента магнитного поля, 3) длительностью импульса градиента магнитного поля, 4) временем delta между двумя следующими друг за другом импульсами градиента магнитного поля и 5) частотой прикладываемого высокочастотного поля. 11. Способ по любому из пп.3, 4, 6, 8 или 10, отличающийся тем, что указанный градиент магнитного поля является включаемым градиентом поля с амплитудой импульса около 0,1 30 Гс/см и длительностью δ импульса примерно 0,1 10 мс. 12. Способ по любому из пп.1 4, 7 11, отличающийся тем, что осуществляют использование коэффициента D диффузии для определения по меньшей мере следующих нефтефизических параметров: селективность воды/углеводорода, уровни насыщения воды и углеводорода, проницаемость, размер пор и распределение размеров пор, вязкость нефти, коэффициент F формы формации, который является мерой среднего увеличения электрического сопротивления вследствие извилистости формации, q-мерное изображение формации. 13. Способ проведения скважинных измерений ЯМР, предусматривающий обеспечение статического магнитного поля заранее выбранной величины в желательной области вдоль скважины, приложение высокочастотного поля заранее выбранных частоты, длительности и величины для генерирования по меньшей мере одного эхо-сигнала, запись параметров по меньшей мере одного эхо-сигнала для обнаружения эффекта диффузии на указанном по меньшей мере одном эхо-сигнале, отличающийся тем, что А) обеспечивают градиент магнитного поля с заранее выбранными параметрами в желательной области вдоль скважины, причем упомянутый градиент магнитного поля прикладывают на заранее заданную длительность по времени, что позволяет молекулам в упомянутой области диффундировать, В) определяют коэффициент диффузии и/или времени обратной релаксации из записанных параметров упомянутого по меньшей мере одного эхо-сигнала. 14. Способ по п.13, отличающийся тем, что при приложении высокочастотного поля прикладывают два или более перефокусированных высокочастотных импульсаров для получения эхо-сигнала. 15. Способ по п.13, отличающийся тем, что при приложении градиента магнитного поля напряженность градиента магнитного поля изменяют синусоидально.

Документы, цитированные в отчете о поиске Патент 1998 года RU2104565C1

Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
US, патент, 4717877, кл
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
US, патент, 4717878, кл
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1

RU 2 104 565 C1

Авторы

Эви Пэлтиел[Il]

Даты

1998-02-10Публикация

1991-12-02Подача