Изобретение относится к области термообработки сыпучих, жидких и пастообразных материалов и может быть использовано в химической и нефтехимической промышленности.
Используемые в настоящее время сушилки для тонкодисперсных, высоковлажных порошков, паст или растворов в большинстве случаев представляют собой комбинированные аппараты, сочетающие различные аэродинамические режимы термообработки кипящий слой, аэрофонтан, циклон, вихревой слой, пневмотранспорт [1] Применение таких комбинаций обусловлено свойствами и полидисперсностью высушиваемый продуктов, а следовательно, и различием скорости сушки частиц различного грансостава. Особые трудности возникают при термообработке тонкодисперсных, высоковлажных, термолабильных материалов, например, пятиводной буры, когда качество и интенсивность сушки зависит от времени пребывания в зоне сушки и относительной скорости взаимодействующих фаз. Для частиц пятиводной буры, средний размер которых составляет 30 мкм, скорость витания настолько мала, что использование сушилок с кипящим слоем нецелесообразно и неэффективно, к тому же при сушке таких продуктов происходит оплавление и забивание газораспределительных решеток высушиваемым материалом. Применение пневмотруб для сушки таких материалов также нежелательно из-за их громоздкости. Использование на первой стадии сушки циклонных и вихревых сушилок также неоправданно, поскольку исходный влажный продукт налипает на стенки камер и при высокой температуре имеет свойство оплавляться, что приводит к снижению качества сушки и надежности работы установки.
Наиболее близкой к заявленному решению по совокупности признаков, т.е. прототипом, является установка для комбинированной сушки термочувствительных материалов [2] Установка содержит циклон с пневмопитателем, загрузочный бункер влажного материала, пневмопитатель подсушенного материала, аэрофонтанную и кипящего слоя сушилки, включенные последовательно в замкнутую систему по ходу материала в процессе сушки. Высушиваемых продукт, подаваемый из бункера пневмопитателем влажного материала, вместе с отработанным теплоносителем из сушилки с кипящим слоем поступает в циклон, где происходит его подсушка. Пневмопитатель подсушенного материала подает этот продукт с рециркулируемым теплоносителем в аэрофонтанную сушилку. Подсушенный материал транспортируется в сушилку с кипящим слоем, где его высушивают до конечной влажности.
Недостатками прототипа являются:
налипание высоковлажных (особенно пастообразных) продуктов на входе в циклон, что приводит к ненадежной работе сушилки;
забивание и оплавление решетки камеры с кипящим слоем, что приводит также к ненадежной работе сушилки;
громоздкость и металлоемкость аппарата с кипящим слоем при обезвоживании мелкодисперсных (микронных) частиц;
неустойчивая работа аппарата кипящего слоя при сушке мелкодисперсных частиц из-за трудности создания слоя материала заданной высоты, что приводит к неравномерности сушки.
Изобретательская задача состояла в разработке комбинированной сушилки, позволяющей повысить ее надежность и качество сушки несыпучих термочувствительных материалов, а именно снизить налипаемость высоковлажных продуктов и достичь равномерности высушивания мелкодисперсных частиц различного гранулометрического состава.
Поставленная задача решена путем создания комбинированной сушилки, содержащей аэрофонтанную камеру и сопряженный вертикально с ней в ее верхней части ротационный спиральный досушиватель, сопло для ввода теплоносителя, загрузочное устройство, выполненное в виде дисмембратора забрасывателя и установленное в нижней части аэрофонтанной камеры над соплом, циклон-разгрузитель и рециркуляционный трубопровод, соединяющий досушиватель с соплом для ввода теплоносителя в аэрофонтанную камеру.
Таким образом, использование именно заявленной совокупности существенных признаков позволяет получить требуемый технический результат, а именно снизить налипаемость и комкование высоковлажных продуктов, что приводит к повышению надежности работы сушилки, и повысить качество сушки путем достижения равномерности высушивания мелкодисперсных термочувствительных материалов различного гранулометрического состава.
На фиг. 1 и 2 представлена схема предлагаемой комбинированной сушилки.
Она состоит из аэрофонтанной камеры 1, сопряженной в ее верхней части с вертикальным ротационным спиральным досушивателем 2, содержащим лопатки 3, выполненные в виде спирали, совершающие вращательное движение с помощью привода 4, рециркуляционного трубопровода 5, соединяющего досушиватель 2 с соплом для ввода теплоносителя 6, загрузочного устройства для исходного продукта 7, установленного над соплом 6 и выполненного в виде дисмембратора 8 с лопаточным забрасывателем 9, смонтированных на одном валу привода 10 циклона-разгрузителя 11 с бункером готового продукта 12, патрубка 13 для ввода влажного материала в загрузочное устройство 7, канала 14 для перемещения аэровзвеси из аэрофонтанной камеры 1 в досушиватель 2; зазор 15 между корпусом досушивателя 2 и лопатками 3, предназначенный для создания рециркуляции части подсушенного материала по трубопроводу 5 в камеру 1; шибера 16 для регулирования степени рециркуляции и патрубка 17 для соединения выхода досушивателя 2 со входом циклона-разгрузителя 11, а также выгрузочное устройство.
Принцип действия сушилки заключается в следующем.
Исходный влажный материал через патрубок 13 подается в загрузочное устройство 7, где продукт подвергается диспергированию дисмембратором 8, после чего лопаточным забрасывателем 9 подается в нижнюю часть аэрофонтанной камеры 1. Сюда же через сопло 6 поступает горячий теплоноситель и часть рециркулируемого воздуха с подсушенными частицами из трубопровода 5. Степень рециркуляции регулируется шибером 16 и скоростью воздуха на выходе из сопла. В камере 1 происходит подсушка мелкодисперсного продукта.
Применение забрасывателя и рециркуляция пылевоздушного потока исключает возможность налипания влажного продукта в нижней части камеры 1. Из камеры подсушенные частицы, достигшие скорости витания, потоком воздуха выносятся по тангенциальному каналу 14 и направляются в ротационный спиральный досушиватель 2, где под влиянием центробежной силы перемещаются по стенкам лопаток 3. Изменением частоты вращения спиралей удается регулировать продолжительность досушки, а также исключить возможность отложения частиц на стенках, что в конечном итоге отражается на интенсивности и качестве сушки.
В досушивателе 2 мелкодисперсный продукт подвергается окончательной досушке, после чего по патрубку 17 поступает на разделение в циклон-разбрызгиватель 11 и ссыпается в бункер 12.
Таким образом, в результате реализации предложенной комбинированной сушилки удалось повысить качество сушки путем равномерности обработки и возможности регулировать интенсивность обработки в аэрофонтанной камере и ротационном спиральном досушивателе, что в конечном итоге отражается на потребительских свойствах, например, пятиводной буры, так как такая бура не слеживается. Неравномерность сушки частиц 10 80 мкм составила не более 2% применение сопряжения аэрофонтанной камеры и спирального досушивателя повысило надежность работы сушилки, так как плавный переход воздушного потока из аэрофонтанной камеры в спиральный досушиватель исключает возможность налипания продукта в месте сопряжения аппаратов, а следовательно, повышается качество сушки; снижается металлоемкость и повышаются технико-экономические показатели процесса сушки на 10 15% по сравнению с существующими типами сушилок.
название | год | авторы | номер документа |
---|---|---|---|
КОМБИНИРОВАННАЯ УСТАНОВКА ДЛЯ ТЕРМООБРАБОТКИ МАТЕРИАЛОВ | 1999 |
|
RU2176367C2 |
УСТАНОВКА ДЛЯ ТЕРМООБРАБОТКИ ПАСТООБРАЗНЫХ МАТЕРИАЛОВ | 1995 |
|
RU2100722C1 |
УСТАНОВКА ДЛЯ КОМБИНИРОВАННОЙ СУШКИ ТЕРМОЧУВСТВИТЕЛЬНЫХ СЫПУЧИХ МАТЕРИАЛОВ | 1966 |
|
SU183127A1 |
Устройство для термообработки материалов | 1985 |
|
SU1307189A2 |
СУШИЛКА ДЛЯ СЫПУЧИХ МАТЕРИАЛОВ | 1999 |
|
RU2164650C1 |
УСТРОЙСТВО ДЛЯ СУШКИ | 2001 |
|
RU2185580C1 |
УСТАНОВКА ДЛЯ НЕПРЕРЫВНОГО НАНЕСЕНИЯ ПОКРЫТИЙ НА ДИСПЕРСНЫЕ МАТЕРИАЛЫ | 1996 |
|
RU2108872C1 |
УСТАНОВКА ДЛЯ СУШКИ ДИСПЕРСНЫХ МАТЕРИАЛОВ | 1999 |
|
RU2169325C1 |
УСТРОЙСТВО ДЛЯ ТЕРМООБРАБОТКИ МАТЕРИАЛОВ | 2003 |
|
RU2245499C1 |
Сушильное устройство с псевдоожиженным слоем | 2019 |
|
RU2716354C1 |
Использование: в области термообработки сыпучих, жидких и пастообразных материалов, преимущественно в химической и нефтехимической промышленности. Сущность: комбинированная сушилка содержит аэрофонтанную камеру и сопряженный вертикально с ней в ее верхней части ротационный спиральный досушиватель, сопло для ввода теплоносителя, загрузочное устройство, выполненное в виде дисмембратора-забрасывателя и установленное в нижней части аэрофонтанной камеры над соплом, циклон-разгрузитель и рециркуляционный трубопровод, соединяющий досушиватель с соплом для ввода теплоносителя в аэрофонтанную камеру. 2 ил.
Комбинированная сушилка для термочувствительных материалов, состоящая из аэрофонтанной камеры, циклона, сопла для ввода теплоносителя, загрузочного и выгрузочного устройства, отличающаяся тем, что она дополнительно содержит ротационный спиральный досушиватель, сопряженный вертикально с аэрофонтанной камерой в ее верхней части, и рециркуляционный трубопровод, соединяющий досушиватель с соплом для ввода теплоносителя в аэрофонтанную камеру, причем загрузочное устройство, выполненное в виде дисмембратора-забрасывателя, расположено в нижней части аэрофонтанной камеры над соплом.
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Муштаев В.И., Тимонин А.С., Лебедев В.Я | |||
Конструирование и расчет аппаратов со взвешенным слоем | |||
Учебное пособие для вузов, М.: Химия, 1991, с | |||
Способ получения жидкой протравы для основных красителей | 1923 |
|
SU344A1 |
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
SU, авторское свидетельство 183127, кл | |||
Прибор для получения стереоскопических впечатлений от двух изображений различного масштаба | 1917 |
|
SU26A1 |
Авторы
Даты
1998-02-27—Публикация
1994-07-15—Подача