СПОСОБ ПОЛУЧЕНИЯ ЖИДКОГО ЧУГУНА ИЛИ ЖИДКИХ СТАЛЬНЫХ ПОЛУФАБРИКАТОВ И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ Российский патент 1998 года по МПК C21B11/00 C21B13/14 

Описание патента на изобретение RU2111259C1

Изобретение относится к способу получения жидкого чугуна или стального полуфабриката из, по меньшей мере, частично содержащего долю мелких фракций исходного сырья, состоящего из железной руды и присадок, причем исходное сырье непосредственно восстанавливают в одной, по меньшей мере, зоне восстановления в псевдоожиженном слое до губчатого железа, губчатое железо расплавляют в плавильной газификационной зоне, с подводом носителей углерода и кислородосодержащего газа и получают восстанавливающий газ, содержащий CO и H2, который подводят в зону восстановления, там подвергают реакции, отводят в виде готового к использованию газа и подают потребителю, а также к установке для осуществления способа.

Способ такого рода известен, например, из австрийского патента АТ/В 390622. Согласно этому документу АТ/В 390622 перерабатывают исходное сырье с очень разной зернистостью, причем исходное сырье подвергают предварительному восстановлению и посредством воздушной сепарации разделяют на фракции с различным размером зерен, которые затем по отдельности окончательно восстанавливают. Этот известный одноступенчатый способ обеспечивает только незначительное использование тепла газа восстановителя и поэтому нуждается в повышенном его расходе. Кроме того, в этом способе не обеспечивается оптимальное использование энергии, химически связанной в газе восстановителе.

Задачей изобретения является создание способа вышеуказанного типа, а также установки для осуществления способа, которая дает возможность использования железной руды, содержащей, по меньшей мере, одну мелкозернистую фракцию, и присадок наиболее экономичным образом, с применением необработанного угля в качестве углеродоносителя, причем может использоваться химически связанная энергия, еще содержащаяся в использованном газе-восстановителе.

Эта задача решается в способе вышеупомянутого типа за счет того, что готовый к употреблению газ, выходящий из зоны предварительного нагрева в случае необходимости после введения части восстановительного газа, выходящего из зоны восстановления после очистки CO2 используют для получения горячебрикетируемого железа, причем мелкозернистую руду подвергают предварительному нагреву в зоне предварительного нагрева, затем подвергают окончательному восстановлению в, по меньшей мере, одной зоне восстановления и затем подводят к устройству для уплотнения и брикетирования, а готовый к употреблению газ после нагрева подают в, по меньшей мере, одну зону восстановления с получением псевдоожиженного слоя, а также отводят от него после прохождения через него и подводят в зону предварительного нагрева с частичным сжиганием с целью повышения температуры для получения псевдоожиженного слоя.

В устройстве для осуществления способа поставленная задача решается за счет того, что газопровод 6, 42 для готового к использованию газа для получения горячебрикетированного железа входит после промежуточного включения скруббера 45 для CO2 и нагревательного устройства 46 в, по меньшей мере, одна восстановительный реактор 8, от которого ведет газопровод в реактор 1 предварительного нагрева с псевдоожиженным слоем, в реактор 1 предварительного нагрева с псевдоожиженным слоем входит трубопровод 3 для загрузки мелко-зернистой руды и от реактора 1 предварительного нагрева с псевдоожиженным слоем отходит транспортирующий трубопровод, подводящий предварительно нагретую мелкозернистую руду к восстановительному реактору, и что перед восстановительным реактором 8, если смотреть в направлении прохождения мелкозернистой руды, включено прессирующее и брикетирующее устройство. Другие признаки и модификации изобретения содержатся в подпунктах.

Ниже изобретение поясняется более подробно с помощью схематически показанного на чертеже примера выполнения установки согласно изобретению.

Позицией 1 обозначен реактор предварительного нагрева, выполненный в виде реактора предварительного нагрева с псевдоожиженным слоем, в который через транспортирующий трубопровод 3, входящий в реактор на высоте зоны 2 псевдоожиженного слоя (зоны предварительного нагрева), загружается исходное сырье, содержащее железную руду и присадки. На верхнем конце шахтообразно выполненного реактора 1 предварительного нагрева с псевдоожиженным слоем осуществляется отсос образующихся в нем и протекающих через него газов через газоотводящий трубопровод 6, оборудованный газоочистительным циклоном 4 и газовым скруббером 5, а также скруббером-Вентури. Эти газы получаются как высокоценный газ с теплотворной способностью около 8000 КДж/Нм3, который может использоваться по различному назначению, например для получения тока с использованием или без использования кислорода.

Предварительно нагретое в реакторе 1 предварительного нагрева с псевдоожиженным слоем исходное сырье поступает через транспортирующий трубопровод 7 в восстановительный реактор 8, выполненный также с псевдоожиженным слоем, и восстанавливается в нем по большей части окончательно.

Через транспортирующий трубопровод 9 для пневматического транспортирования губчатого железа (с помощью инжектора N2) - в этом случае может быть использовано и другое устройство для принудительной транспортировки - губчатое железо, полученное в восстановительном реакторе 8 с псевдоожиженным слоем, подается в плавильный газификатор 10, а именно он поступает в него на высоту кипящего слоя III, II или на высоте находящегося под ним неподвижного слоя 1. Плавильный газификатор имеет один, по меньшей мере, подвод 11 для угля и присадок, а также несколько расположенных на разной высоте сопел 12 для подвода кислородосодержащего газа.

В плавильном газификаторе 10 ниже зоны плавильной газификации, образованной неподвижным слоем I, лежащим над ним слоем II кипящего крупнозернистого кокса и лежащим поверх него слоем III мелкозернистого кокса, с расположенным поверх них раскислительным пространством IV, собирается расплавленный чугун 13 и расплавленный шлак 14, которые по отдельности сливаются через отверстия 15, 16. В плавильном газификаторе 10 из носителей углерода и кислородсодержащего газа получают газ-восстановитель, который собирается в раскислительном пространстве IV выше кипящего слоя III и отводится через газопровод 17 в восстановительный реактор с псевдоожиженным слоем, а именно, через имеющие форму усеченного конуса, предусмотренное для получения псевдоожиженного слоя 18 или кипящего слоя 18 (зона восстановления) сужения газораспределительного основания 19 восстановительного реактора 8 с псевдоожиженным слоем, имеющего, в основном, шахтообразную форму, по периметру которого с помощью кольцевого трубопровода 20 подводится газ-восстановитель.

Крупные частицы твердого вещества, которые не могут находиться в псевдоожиженном слое во взвешенном состоянии, падают под действием силы тяжести в центральной части. Этот центральный вынос 21 твердого вещества выполнен таким образом, что за счет радиальной подачи газа 22 в цилиндрической части 23 емкости с конусным основанием, расположенной ниже газораспределительного основания 19, имеющего форму усеченного конуса, образуется неподвижный слой, благодаря чему может обеспечиваться удовлетворительное восстановление и крупных частиц.

За счет выполнения газораспределительного основания 19 в виде усеченного конуса происходит изменение скорости по высоте опорожняющейся трубы. Следствие этого является установление более узкого диапазона зернистости. Благодаря соответствующему расположению сопел в газораспределительном основании 19 может быть получен циркулирующий внутри псевдоожиженный слой, скорость которого в центре выше, чем по краям. Образование такого псевдоожиженного слоя может происходить как в восстановительном реакторе 8, так и в реакторе 1 предварительного нагрева.

Часть газа восстановителя, выходящего из плавильного газификатора, подвергается очистке в горячем циклоне 25, охлаждению в следующем за ним скруббере 26 и с помощью компрессора 27 через газопровод 28 снова смешивается с восстановительным газом, выходящим из плавильного газификатора 10. Пыль, осаждающаяся в горячем циклонов 25, возвращается через инжектор с газом N2 29 в плавильный газификатор 10. Часть еще не охлажденного газа восстановителя, выходящего из горячего циклона 25, поступает через газопровод 22, образованный кольцевым трубопроводом, в восстановительный реактор 8 с псевдоожиженным слоем над его цилиндрической частью 23.

Газ, отводимый из восстановительного реактора 8 с псевдоожиженным слоем через газопровод 30, подводится в восстановительный циклон 31, в котором осаждается еще содержащаяся в газе-восстановителе мелкозернистая фракция и окончательно восстанавливается. Эта мелкозернистая фракция вводится через транспортирующий трубопровод 32 и инжектор 33 с газом N2 в плавильный газификатор 10, приблизительно, на высоте верхнего конца неподвижного слоя 1.

Частично окисленный газ-восстановитель, выходящий из восстановительного циклона 8, поступает через газопровод 30 в реактор 1 предварительного нагрева с псевдоожиженным слоем, однако при этом для нагрева газа восстановителя часть его сгорает, а именно в камере 34 сгорания, в которую входит трубопровод 35, подающий кислород содержащий газ.

Из восстановительного реактора 8 с псевдоожиженным слоем часть окончательно восстановленного сырьевого материала отводится, приблизительно, на высоте псевдоожиженного слоя 18 с помощью выгружающего шнека 36 и подается с помощью транспортирующего трубопровода 37 через инжектор 33 газа N2 в плавильный газификатор 10, приблизительно, на высоте верхнего конца неподвижного слоя 1, предпочтительно, вместе с мелкозернистой фракцией, полученной из восстановительного циклона 31.

Мелкозернистая фракция, осажденная в циклоне 4, куда она подводится трубопроводом 6, подающим готовый к употреблению газ, через транспортирующий трубопровод 38 с шлюзовыми затворами 39, которые также установлены и на других транспортирующих трубопроводах 32, 37 для частично или полностью восстановленного газа, подводится через кольцевой трубопровод 20, подводящий газ-восстановитель в восстановительный реактор 8 с псевдоожиженным слоем.

Работа установки согласно фиг. 1 осуществляется следующим образом. Подготовленная мелкозернистая руда - просеянная и высушенная - загружается при следующем распределении зернистости:
0,044 мм = около 20%
0,044 - 6,3 мм = около 70%
6,3 - 12,7 мм = около 10%
и с влажностью около 2% пневматически или с помощью ленточного транспортера с большим углом подъема или вертикального транспортера в реактор 1 предварительного нагрева. Там происходит предварительный нагрев в зоне 2 псевдоожиженного слоя до температуры около 850oC и вследствие восстановительной атмосферы, в случае необходимости, подвергается предварительному восстановлению, приблизительно, до стадии вюстита.

Для этого процесса предварительного восстановления газ восстановитель должен иметь, по меньшей мере, 25% CO + H2 - для того, чтобы обеспечить достаточную эффективность восстановления.

Затем предварительно нагретая и, в случае необходимости, предварительно восстановленная мелкозернистая руда - преимущественно, под действием силы тяжести - поступает в восстановительный реактор 8, в псевдоожиженном или кипящем слое 18 которого мелкозернистая руда, в значительной мере, восстанавливается при температуре около 850oC до стадии Fe. Для этого процесса восстановления газ должен иметь содержание CO + H2, по меньшей мере, 68%.

В восстановительном реакторе 8 происходит сепарация мелкозернистой руды, причем фракция менее 0,2 мм захватывается в восстановительном циклоне 31 газом-восстановителем. Во время сепарации твердого вещества под действием сил, создаваемых в циклоне, происходит окончательно восстановление мелкозернистой фракции руды менее 0,2 мм.

Более мелкозернистая фракция, выносимая из псевдоожиженного слоя 18 восстановительного реактора 8 с помощью выгружающего шнека 36, подводится через шлюзовые затворы 39 вместе с осажденной в восстановительном циклоне 31 мелкозернистой руды посредством инжектора 33 с газом N2 в плавильный газификатор 10 в зону плоскости вдувания кислородсодержащего газа.

Более крупная фракция твердого вещества из нижней зоны восстановительного реактора 8 через шлюзовые затворы 39 и с помощью инжектора 9 газа N2 или под действием собственной силы тяжести загружается или вдувается в плавильный газификатор 10 в зону кипящего слоя III мелкозернистого кокса.

Пыль (преимущественно, с содержанием Fe и C) вводится в горячий циклон 25 через шлюзовые затворы 39 с помощью инжектора 29 газа N2 и с помощью кислородопылеугольной горелки в плавильный газификатор 10 в зону между кипящим слоем III мелкозернистого кокса и кипящим слоем крупнозернистого кокса.

Необходимые для ведения процесса присадки загружаются с целью предварительного нагрева и кальцинирования в крупнозернистом состоянии, предпочтительно, с размером зерен от 4 до 12,7 мм через линию 11 для загрузки угля и в мелкозернистом состоянии, предпочтительно, с размером зерен от 2 до 6,3 мм через линию 3 для загрузки мелкозернистой руды.

Для мелкозернистой руды с большей длительностью восстановления, как это представлено на фиг. 2, имеется второй (а также, если необходимо, третий) восстановительный реактор 8' с псевдоожиженным слоем с дополнительным восстановительным (реактором) циклоном 31', включенный с первым восстановительным реактором 8 последовательно или параллельно. Во втором восстановительном реакторе мелкозернистая руда восстанавливается до стадии вюстита, а в первом восстановительном реакторе 8 до стадии Fe.

В этом случае фракции твердого вещества, выносимая из псевдоожиженного слоя 18' второго восстановительного реактора с помощью выгружающего шнека 36', загружается вместе с более крупной фракцией твердого вещества из нижней зоны второго восстановительного реактора 8' под действием силы тяжести в первый восстановительный реактор 8. Мелкозернистая руда, осаждающаяся во втором восстановительном циклоне 31', подводится вместе с мелкозернистой рудой, осаждающейся в первом восстановительном циклоне 31 с помощью инжектора 33 с газом N2, в плавильный газификатор 10 в зону плоскости вдувания кислородосодержащего газа.

Если, в случае применения двух восстановительных реакторов 8, 8' с псевдоожиженным слоем и двух восстановительных циклонов 31, 31', не достигается рабочее давление для компенсации потерь давления в системе, газовая смесь, необходимая для реактора 1 предварительного подогрева, доводится с помощью компрессора 40 до необходимого давления. В этом случае газ из второго восстановительного циклона 31' очищается в скруббере 41. Кроме того, сжимается только часть газового потока - другая же часть отводится в виде газа, готового для использования, через трубопровод 42, и смешивается в смесительной камере 43 с кислородосодержащем газом, подводимым по трубопроводу 44, после чего в реакторе 1 предварительного нагрева может произойти частичное сжигание газа-восстановителя с целью достижения необходимой температуры предварительного нагрева мелкозернистой руды.

Высококачественный, готовый к использованию, газ, полученный при производстве чугуна, может использоваться, как указано выше, для получения электрического тока с или без кислорода. Согласно еще одной предпочтительной форме выполнения, представленной на фиг. 3, готовый к использованию газ после очистки CO2 - 45 и нагрева 46 до, приблизительно, 850oC в качестве газа восстановителя, как описано ниже:
Для получения горячебрикетированного железа мелкозернистая руда одинаковой спецификации с помощью газа-восстановителя предварительно нагревается и восстанавливается на тех же агрегатах, как и при получении чугуна. Окончательно восстановленные зернистые фракции из, по меньшей мере, одного восстановительного реактора 8 и из восстановительного циклона 31 вдуваются с помощью инжектора 33 с газом N2 в загрузочный бункер 47. Альтернативно более крупнозернистая фракция может загружаться под действием силы тяжести из нижней зоны восстановительного реактора 8 в загрузочный бункер 47.

В заключение окончательно восстановления мелкозернистая руда, металлизированная, приблизительно, на 92%, имеющая температуру, по меньшей мере. 750oC, поступает под действием силы тяжести через шнек 48 предварительного уплотнения с регулируемым двигателем в вальцовый брикетирующий пресс 49.

В нижеследующих примерах представлены типичные параметры способа согласно изобретению, которые обеспечиваются при работе установки согласно изобретению в формах выполнения, показанных на фиг. 1 - 3.

Пример.

Химический состав угля (значения в сухом состоянии), %:
C - 77
H - 4,5
N - 1,8
O - 7,6
S - 0,5
Вода - 9,1
C фикс. - 61,5
Химический состав руды (значения во влажном веществе), %:
Fe - 62,84
Fe2O3 - 87,7
CaO - 0,73
MgO - 0,44
SiO2 - 6,53
Al2O3 - 0,49
MnO - 0,15
Потери при прокаливании - 0,08
Влажность - 2
Распределение зернистости в мелкозернистой руде, %:
+10 мм - 0
10 - 6 мм - 5,8
6 - 2 мм - 44,0
2 - 0,63 мм - 29,6
0,63 - 0,125 - 13,0
- 0,125 мм - 7,6
Присадки (значения в сухом веществе), %:
CaO - 45,2
MgO - 9,3
SiO2 - 1,2
Al2O3 - 0,7
MnO - 0,6
Fe2O3 - 2,3
Потери при прокаливании - 39,1
Для получения 42 т чугуна в час на установке согласно фиг. 1 газифицировали 42 т угля в час с помощью 29000 Nм3O2 ч. Расход руды составил при этом 64 т/ч, а расход присадок 14 т/ч.

Полученный чугун имел наряду с железом следующий состав, %:
C - 4,2
Si - 0,4
P - 0,07
Mn - 0,22
S - 0,04
Готовый к употреблению газ, полученный на установке для производства чугуна, составил 87.000 Nм3/ч и имел следующий состав, %:
CO - 36,1
CO2 - 26,9
H2 - 16,4
H2O - 1,5
N2 + Ar - 18,1
CH4 - 1
H2S - 0,02
теплотворная способность 6780 кдж/Nм3
При дальнейшем использовании газа, полученного из установки для производства чугуна в процессе изготовления брикетированного в горячем состоянии железа согласно фиг. 3 можно получить 29 т горячих брикетов в час. Необходимый для этого рецикл-газ составил 36.000 Nм3/ч. Брикетированное в горячем состоянии губчатое железо имеет следующий химический состав, %:
металлизация - 92
C - 1
S - 0,01
P - 0,03
Количество готового к употреблению газа, полученного на установке для изготовления горячебрикетированного железа составляет 79.000 Nм3/ч, при этом газ имеет следующий состав, %:
CO - 21,6
CO2 - 44,1
H2 - 10,6
H2O - 2,8
N2 + Ar - 19,9
CH4 - 1
теплотворная способность 4200 кдж/Nм3.

Потребность в мощности электрического тока, необходимого в установке для получения горячебрикетированного железа, составляет 23 Мвт. Готовый к употреблению газ, полученный на установке для изготовления горячебрикетированного железа соответствует термической мощности 145 МВт.

Похожие патенты RU2111259C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ЖИДКОГО ЧУГУНА ИЛИ ЖИДКИХ СТАЛЬНЫХ ПОЛУПРОДУКТОВ ИЗ ЖЕЛЕЗОРУДНОГО МАТЕРИАЛА И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1993
  • Вернер Кепплингер[At]
  • Панайиотис Матцавракос[At]
  • Иоханнес Шенк[At]
  • Дитер Сиука[At]
  • Кристиан Бем[At]
RU2104309C1
СПОСОБ ПОЛУЧЕНИЯ ЖИДКОГО ЧУГУНА ИЛИ ЖИДКИХ СТАЛЬНЫХ ПОЛУПРОДУКТОВ И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1996
  • Вернер Леопольд Кепплингер
  • Феликс Валльнер
  • Йоханнес Шенк
RU2122586C1
СПОСОБ ПОЛУЧЕНИЯ ЖИДКОГО ЧУГУНА ИЛИ ЖИДКИХ СТАЛЬНЫХ ПОЛУПРОДУКТОВ И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1996
  • Леопольд Вернер Кепплингер
  • Феликс Валльнер
  • Йоханнес-Леопольд Шенк
RU2125613C1
СПОСОБ ПОЛУЧЕНИЯ ЖИДКОГО ЧУГУНА ИЛИ ЖИДКИХ СТАЛЬНЫХ ПОЛУПРОДУКТОВ И УСТАНОВКА ДЛЯ ОСУЩЕСТВЛЕНИЯ СПОСОБА 1996
  • Михель Нагл
RU2133780C1
УСТРОЙСТВО ДЛЯ ДОЗИРОВАННОГО ВВОДА МЕЛКОДИСПЕРСНОГО МАТЕРИАЛА В РЕАКЦИОННЫЙ СОСУД, УСТАНОВКА ДЛЯ ПОЛУЧЕНИЯ МЕТАЛЛИЧЕСКИХ РАСПЛАВОВ С ТАКИМ УСТРОЙСТВОМ И СПОСОБ ЭКСПЛУАТАЦИИ ЭТОГО УСТРОЙСТВА 1997
  • Геннари Удо
  • Кепплингер Леопольд Вернер
  • Валльнер Феликс
RU2180005C2
СПОСОБ ПОЛУЧЕНИЯ ЖИДКОГО ЧУШКОВОГО ЧУГУНА ИЛИ ПОЛУФАБРИКАТОВ СТАЛИ ИЗ ЖЕЛЕЗОСОДЕРЖАЩЕГО МАТЕРИАЛА И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1997
  • Нагл Михаэл
  • Шенк Иоганнес-Леопольд
  • Кепплингер Леопольд Вернер
RU2192475C2
СПОСОБ ВЫПЛАВКИ МЕТАЛЛА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2001
  • Цирнгаст Йоханн
RU2263715C2
СПОСОБ ПОЛУЧЕНИЯ РАСПЛАВЛЕННОГО ЧУШКОВОГО ЧУГУНА ИЛИ ПОЛУПРОДУКТОВ СТАЛИ И УСТАНОВКА ДЛЯ ОСУЩЕСТВЛЕНИЯ ЭТОГО СПОСОБА 1996
  • Кепплингер Вернер Леопольд
  • Валлнер Феликс
  • Шенк Иоганнес
RU2135598C1
СПОСОБ ЗАГРУЗКИ НОСИТЕЛЕЙ МЕТАЛЛА В ПЛАВИЛЬНО-ГАЗИФИКАЦИОННУЮ ЗОНУ И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1997
  • Кепплингер Леопольд Вернер
  • Валлнер Феликс
  • Шенк Иоганнес-Леопольд
RU2165984C2
ПЛАВИЛЬНО-ГАЗИФИКАЦИОННЫЙ АППАРАТ ДЛЯ ПОЛУЧЕНИЯ РАСПЛАВА МЕТАЛЛА И УСТАНОВКА ДЛЯ ПОЛУЧЕНИЯ РАСПЛАВОВ МЕТАЛЛА 1997
  • Четче Альберт
RU2164951C2

Иллюстрации к изобретению RU 2 111 259 C1

Реферат патента 1998 года СПОСОБ ПОЛУЧЕНИЯ ЖИДКОГО ЧУГУНА ИЛИ ЖИДКИХ СТАЛЬНЫХ ПОЛУФАБРИКАТОВ И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Сущность изобретения: жидкий чугун или полуфабрикат получают из железных руд и сырьевых материалов, имеющих, по меньшей мере, частично мелкозернистую фракцию, образующую присадки, причем сырьевые материалы восстанавливают непосредственно до губчатого железа в одной, по меньшей мере, восстановительной зоне, губчатое железо расплавляют в плавильном газификаторе с подводом носителей углерода и кислородсодержащего газа. В газификаторе получают газ-восстановитель, который подводят в зону восстановления, там подвергают химическому превращению и отводят в виде газа, готового к употреблению. Готовый к употреблению газ, выходящий из зоны предварительного нагрева, в случае необходимости, после введения части восстановительного газа, выходящего из зоны восстановления после очистки СО, используют для получения горячебрикетируемого железа, причем мелкозернистую руду подвергают предварительному нагреву в зоне предварительного нагрева, затем подвергают окончательному восстановлению в, по меньшей мере, одной зоне восстановления и затем подводят к устройству для уплотнения и брикетирования, а готовый к употреблению газ после нагрева подают в, по меньшей мере, одну зону восстановления с получением псевдоожиженного слоя и после прохождения через него отводят в зону предварительного нагрева с частичным сжиганием с целью повышения температуры для получения псевдоожиженного слоя. 13 з.п. ф-лы, 2 ил.

Формула изобретения RU 2 111 259 C1

1. Способ получения жидкого чугуна или жидких стальных полуфабрикатов, включающий предварительный нагрев в зоне предварительного нагрева в псевдоожиженном слое сырья, состоящего из железной руды и присадок и имеющего по меньшей мере частично мелкозернистую фракцию, последующее восстановление в по крайней мере одной зоне с псевдоожиженным слоем до губчатого железа, его подачу в плавильно-газификационную зону и расплавление с одновременным получением восстановительного газа, содержащего CO и H2, за счет подвода углеродсодержащего материала и кислородсодержащего газа, дальнейшее использование полученного восстановительного газа в зоне восстановления, отвод отработанного газа и последующий подвод его к потребителю, отличающийся тем, что дополнительно осуществляют получение горячебрикетированного губчатого железа, которое включает предварительный нагрев мелкозернистой железной руды в дополнительной зоне предварительного нагрева с псевдоожиженным слоем, последующее восстановление в по крайней мере одной дополнительной зоне восстановления с псевдоожиженным слоем, уплотнение и брикетирование, при этом газ из зоны восстановления направляют в зону предварительного нагрева, отводят из зоны предварительного нагрева, и после очистки от CO2 и нагрева направляют в дополнительную зону восстановления для получения горячебрикетированного губчатого железа, а после прохождения через нее осуществляют частичное дожигание газа для повышения температуры и подают его в зону дополнительного предварительного нагрева получения горячебрикетированного губчатого железа. 2. Способ по п. 1, отличающийся тем, что к газу, отводимому из зоны предварительного нагрева, примешивают газ, выходящий из зоны восстановления. 3. Способ по пп.1 и 2, отличающийся тем, что в зону предварительного нагрева с псевдоожиженным слоем подают, преимущественно, гематитовую и/или магнетитовую мелкозернистую руду и/или рудную пыль, и после восстановления в по крайней мере одной зоне восстановления с псевдоожиженным слоем принудительно транспортируют предпочтительно посредством пневмотранспортирования в кипящий и/или неподвижный слой плавильно-газификационной зоны и там расплавляют. 4. Способ по пп.1 - 2, отличающийся тем, что часть восстановительного газа, полученного в плавильно-газификационной зоне, подводят в зону восстановления для получения псевдоожиженного слоя, а другую часть очищают в горячем циклоне и скруббере, после чего примешивают в качестве охлаждающего газа к первой части восстановительного газа, подводимой к зоне восстановления. 5. Способ по п.3, отличающийся тем, что часть восстановительного газа, полученного в плавильно-газификационной зоне, подают в псевдоожиженный слой зоны восстановления, а другую часть - в горячий циклон, а затем частично в нижнюю часть зоны восстановления, в которой образован кипящий слой. 6. Способ по любому из пп.1 - 5, отличающийся тем, что восстановительный газ, выходящий из зоны восстановления, подвергают частичному досжиганию для повышения температуры, после чего направляют в зону предварительного нагрева. 7. Способ по любому из пп.1 - 6, отличающийся тем, что восстановительный газ, отводимый из зоны восстановления, подвергают очистке от мелкозернистой фракции в восстановительном циклоне, в котором осуществляют более полное восстановление осаждаемой фракции, после чего осажденную фракцию подвергают с помощью инжектора в плавильно-газификационную зону в области ввода кислородсодержащего газа. 8. Способ по любому из пп.1 - 7, отличающийся тем, что часть исходного сырья, выводят из зоны восстановления с псевдоожиженным слоем и подают через систему шлюзовых затворов с помощью инжектора в плавильно-газификационную зону в области ввода кислородсодержащего газа. 9. Способ по п.8, отличающийся тем, что часть исходного сырья, выводимого из зоны восстановления с псевдоожиженным слоем, вводят в плавильно-газификационную зону совместно с осажденной в восстановительном циклоне мелкозернистой фракцией. 10. Способ по п. 8 или 9, отличающийся тем, что из восстановительного газа из плавильно-газификационной зоны в горячем циклоне улавливают пыль, которую через систему шлюзовых затворов с помощью инжектора и кислородно-пылеугольной горелки вводят в плавильно-газификационную зону в область между образующимся в ней кипящим слоем мелкозернистого кокса и кипящим соем крупно-зернистого кокса. 11. Способ по любому из пп.1 - 10, отличающийся тем, что часть присадок, необходимую для плавильного процесса, загружают вместе с углем непосредственно в плавильно-газификационную зону, а часть присадок вместе с мелкозернистой рудой загружают в зону предварительного нагрева. 12. Способ по п.11, отличающийся тем, что присадки, загружаемые вместе с углем в плавильно-газификационную зону, состоят из крупнозернистой фракции, предпочтительно с размером 4 - 12,7 мм, а присадки, загружаемые вместе с мелкозернистой рудой в зону предварительного нагрева, состоят из мелкозернистой фракции, предпочтительно от 2 - 6,3 мм. 13. Способ по любому из пп.1 - 12, отличающийся тем, что восстановление осуществляют в двух отдельно расположенных друг над другом зонах восстановления, причем восстановительный газ подают последовательно от одной зоны к другой противоточно с мелкозернистой рудой, а затем под давлением к зоне предварительного нагрева. 14. Установка для получения жидкого чугуна или стальных полуфабрикатов, содержащая оборудованный средством для загрузки железной руды и присадок реактор предварительного нагрева с псевдоожиженным слоем, соединенный с ним посредством транспортирующего трубопровода, по крайней мере один восстановительный реактор с псевдоожиженным слоем, и плавильный газификатор, оборудованный средствами подачи кислородсодержащего газа и твердых носителей углерода, выполненный с отверстиями для выпуска чугуна или стального полуфабриката и шлака и соединенный посредством транспортирующего трубопровода и трубопровода получаемого в газификаторе восстановительного газа с восстановительным реактором, который соединен посредством газопровода с реактором предварительного нагрева, имеющим также газопровод отвода использованного восстановительного газа, отличающаяся тем, что она снабжена линией производства горячебрикетированного губчатого железа, содержащей последовательно расположенные в направлении движения обрабатываемого материала дополнительный реактор предварительного нагрева с псевдоожиженным слоем, оборудованный средством загрузки мелкозернистой руды, по крайней мере один дополнительный восстановительный реактор с псевдоожиженным слоем и средство для прессования и брикетирования горячего зубчатого железа, при этом газопровод отвода использованного восстановительного газа от реактора предварительного нагрева снабжен скруббером для очистки от CO2 и нагревательным узлом и соединен с дополнительным восстановительным реактором, который соединен с дополнительным реактором предварительного нагрева посредством газопровода и транспортирующего трубопровода. 15. Установка по п.14, отличающаяся тем, что восстановительный реактор связан с реактором предварительного нагрева трубопроводом для примешивания газа, выходящего из зоны восстановления в зону предварительного нагрева. 16. Установка по п. 14, отличающаяся тем, что в качестве транспортирующего трубопровода между восстановительным реактором и плавильным газификатором использован пневмотрубопровод, который соединен с плавильным газификатором на высоте псевдоожиженного и/или кипящего слоя. 17. Установка по п.14 или 16, отличающаяся тем, что она снабжена трубопроводом для подачи кислорода, подсоединенным к газопроводу между реактором предварительного нагрева и восстановительным реактором. 18. Установка по любому из пп.14 - 17, отличающаяся тем, что восстановительный реактор выполнен по высоте переменного диаметра с переходной конической частью, при этом диаметр нижней части реактора меньше диаметра верхней части, а трубопровод для получаемого в газификаторе восстановительного газа соединен с переходной конической частью восстановительного реактора. 19. Установка по любому из пп.14 - 18, отличающаяся тем, что реактор предварительного нагрева выполнен с конической нижней частью, соединенной с газопроводом от восстановительного реактора. 20. Установка по любому из пп.14 - 19, отличающаяся тем, что восстановительный реактор снабжен расположенным на высоте псевдоожиженного слоя узлом для выноса мелкозернистых фракций с транспортирующим трубопроводом, ведущим к пневмотрубопроводу, входящему на высоте неподвижного или псевдоожиженного слоев в плавильном газификаторе. 21. Установка по любому из пп.14 - 20, отличающаяся тем, что она снабжена вторым восстановительным реактором с псевдоожиженным слоем, расположенным под восстановительным реактором.

Документы, цитированные в отчете о поиске Патент 1998 года RU2111259C1

AT, патент, 390622, кл
Выбрасывающий ячеистый аппарат для рядовых сеялок 1922
  • Лапинский(-Ая Б.
  • Лапинский(-Ая Ю.
SU21A1

RU 2 111 259 C1

Авторы

Вернер Кепплингер[At]

Панайиотис Матцавракос[At]

Йоханнес Шенк[At]

Дитер Сиука[At]

Кристиан Бем[At]

Даты

1998-05-20Публикация

1993-10-21Подача