ИНФРАКРАСНЫЙ ИЗМЕРИТЕЛЬ ВЛАЖНОСТИ ПРОДУКТОВ И МАТЕРИАЛОВ Российский патент 1998 года по МПК G01N33/04 G01N21/39 G01N21/81 

Описание патента на изобретение RU2113711C1

Прибор предназначен для контроля влажности различных продуктов, в том числе сухих, и материалов, в том числе сыпучих, например сухих молочных продуктов, казеина, муки, сухих синтетических и моющих сред, цемента и т.д.

Наиболее близким к предлагаемому является инфракрасный (ИК) экспресс-анализатор влажности сухих продуктов, включая молочные, состоящие из источника ИК излучения, кюветы для анализируемого продукта, двух светофильтров, выделяющих излучение необходимых длин волн (измерительной и опорной), светоприемника усилителя, цифрового индикатора и микропроцессорного блока обработки сигнала [1].

Недостатком этого прибора является невысокая точность контроля, надежность и чувствительность к измеряемому параметру влажности продукта. Кроме того, прибор имеет большие габариты и высокую стоимость. Он выполнен из двух блоков: оптического преобразователя и цифрового преобразователя для обработки данных. Содержит механические узлы (вращающийся диск со светофильтрами), что снижает его надежность и точность измерения. Селективность светофильтров (в лучшем случае полуширина полосы излучения составляет 20 нм) не обеспечивает максимальной чувствительности к влаге.

Технический результат изобретения заключается в повышении точности контроля надежности и чувствительности к измеряемому параметру влажности продукта или материала, а также снижению стоимости и габаритов предлагаемого прибора.

Технический результат достигается тем, что в инфракрасном измерителе влажности, включающем источник инфракрасного излучения, кювету для анализируемого продукта, светоприемник, усилитель, микропроцессорный блок обработки сигнала и цифровой индикатор, согласно изобретению в качестве источника инфракрасного излучения в него введен лазер, содержащий систему термостабилизации которая обеспечивает устойчивую полосу излучения от 1440 до 1445 нм, и установленный таким образом, что угол падения потока инфракрасного излучения на анализируемый продукт равен 45o, микропроцессорный блок обработки сигнала оснащен интерфейсом связи, а источник инфракрасного излучения, светоприемник, усилитель, микропроцессорный блок обработки сигнала с интерфейсом и цифровой индикатор объединены в единый моноблок. При этом прибор может включать персональную электронно-вычислительную машину (ПЭВМ), которая связана с микропроцессорным блоком обработки сигнала через интерфейс.

Использование лазера в качестве источника излучения позволяет повысить в 1,5 раза точность измерения влажности исследуемого продукта, так как узкая спектральная полоса излучения лазера от 1440 до 1445 нм увеличивает максимальную чувствительность прибора минимум на порядок. Конструктивное выполнение его в виде моноблока позволило уменьшить габариты и массу в 9 раз. Отсутствие подвижных частей повышает надежность прибора. Угол падения потока инфракрасного излучения 45o является и оптимальным для полноты отражения излучения.

Схема предлагаемого прибора изображена на чертеже.

Прибор конструктивно выполнен в одном корпусе и состоит из инфракрасного лазера 1, кюветы 2 для анализируемого образца 3, снабженной прозрачным для инфракрасного излучения стеклом 4, светоприемника 5, усилителя 6, микропроцессорного блока 7 обработки сигнала, оснащенного интерфейсом 8, и цифрового индикатора 9. Прибор может также включать ПЭВМ 10, связь которой с микропроцессорным блоком обработки сигнала осуществляется через интерфейс.

Прибор работает следующим образом. Излучение лазера 1 с длиной волны от 1440 до 1445 нм проходит через стекло 4 кюветы 2 и падает на поверхность образца анализируемого продукта или материала 3 под углом 45o. Часть ИК излучения поглощается влагой, содержащейся в образце, а часть отражается. При этом угол 45o является оптимальным с точки зрения полноты отражения излучения. Отраженное ИК-излучение попадает на светоприемник 5, который преобразует его в электрический сигнал, обратно пропорциональный величине влажности образца. Этот сигнал поступает в усилитель 6 и далее в микропроцессорный блок обработки сигнала 7, где преобразуется в цифровую информацию,отражаемую показывающим цифровым индикатором 9.

Прибор может включать и ПЭВМ 10, связь которой с микропроцессорным блоком обработки сигнала осуществляется через интерфейс.

Наличие микропроцессорного блока обработки сигнала наряду с преобразователем его в цифровую информацию позволяет обеспечивать автоматическую калибровку для различных продуктов или материалов и сохранение параметров калибровки в памяти.

Похожие патенты RU2113711C1

название год авторы номер документа
АВТОМАТИЧЕСКИЙ РЕФРАКТОМЕТР ДЛЯ КОНТРОЛЯ ПАРАМЕТРОВ ЖИДКИХ СРЕД 1997
  • Брусиловский Леонид Петрович
  • Верников Михаил Аврамович
  • Стрепихеева Александра Николаевна
  • Фетисов Евгений Алексеевич
  • Харебов Владимир Георгиевич
RU2113710C1
СТАЦИОНАРНЫЙ PH-МЕТР ДЛЯ КОНТРОЛЯ ЖИДКИХ СРЕД 1997
  • Брусиловский Леонид Петрович
  • Верников Михаил Аврамович
  • Стрепихеева Александра Николаевна
RU2112975C1
ЭКСПРЕСС-АНАЛИЗАТОР ЖИДКИХ СРЕД 1997
  • Брусиловский Леонид Петрович
  • Верников Михаил Аврамович
  • Стрепихеева Александра Николаевна
RU2112974C1
ИНФРАКРАСНЫЙ АБСОРБЦИОННЫЙ ГАЗОАНАЛИЗАТОР 2005
  • Бондарчук Елена Николаевна
  • Сорокин Владимир Алексеевич
RU2292039C2
Гамма-абсорбционный газоанализатор 1987
  • Журавлев Михаил Константинович
  • Твердохлебов Василий Игнатьевич
  • Климов Василий Яковлевич
  • Думинов Вячеслав Максимович
SU1582096A1
СПОСОБ ДЛЯ КОНТРОЛЯ СОДЕРЖАНИЯ ОКИСИ УГЛЕРОДА В ОТРАБОТАВШИХ ГАЗАХ ТРАНСПОРТНОГО СРЕДСТВА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2007
  • Ефанов Василий Васильевич
  • Ковалев Вячеслав Данилович
  • Глущенко Юрий Алексеевич
  • Буга Евгений Александрович
RU2348922C1
ОПТИЧЕСКИЙ АБСОРБЦИОННЫЙ ГАЗОАНАЛИЗАТОР 2021
  • Замятин Николай Владимирович
  • Смирнов Геннадий Васильевич
  • Синица Леонид Никифорович
RU2778205C1
Способ двухлучевых термолинзовых измерений с обратной синхронизацией сигнала 2015
  • Проскурнин Михаил Алексеевич
  • Недосекин Дмитрий Алексеевич
  • Волков Дмитрий Сергеевич
  • Михеев Иван Владимирович
  • Филичкина Вера Александровна
RU2615912C1
ОПТИЧЕСКИЙ ДИФФУЗОМЕТР ДЛЯ АНАЛИЗА ТРАНСПОРТА БИОЛОГИЧЕСКИ АКТИВНОГО ВЕЩЕСТВА, АНАЛИТИЧЕСКАЯ СИСТЕМА ДЛЯ ОПРЕДЕЛЕНИЯ БИОЛОГИЧЕСКИ АКТИВНОГО ВЕЩЕСТВА В ЖИДКОСТИ И СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ БИОЛОГИЧЕСКИ АКТИВНОГО ВЕЩЕСТВА В ЖИДКОСТИ 2010
  • Гусев Валерий Михайлович
  • Компанец Олег Николаевич
  • Павлов Михаил Алексеевич
  • Евдокимов Юрий Михайлович
  • Скуридин Сергей Геннадьевич
  • Чулков Дмитрий Петрович
  • Дубинская Валентина Алексеевна
RU2429465C1
СПОСОБ ОПРЕДЕЛЕНИЯ И ИДЕНТИФИКАЦИИ БИОЛОГИЧЕСКИХ МИКРООБЪЕКТОВ И ИХ НАНОКОМПОНЕНТОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2008
  • Александров Михаил Тимофеевич
  • Васильев Евгений Николаевич
  • Миланич Александр Иванович
  • Смирнов Михаил Олегович
RU2406078C2

Реферат патента 1998 года ИНФРАКРАСНЫЙ ИЗМЕРИТЕЛЬ ВЛАЖНОСТИ ПРОДУКТОВ И МАТЕРИАЛОВ

Изобретение относится к измерительным приборам, в частности молочной промышленности. Инфракрасный измеритель влажности содержит источник инфракрасного излучения в виде лазера, содержащего систему термостабилизации. Последняя обеспечивает устойчивую полосу излучения от 1440 до 1445 нм. Также измеритель содержит кювету для анализируемого продукта, свето-приемник, усилитель, микропроцессорный блок обработки сигнала и цифровой индикатор. Микропроцессорный блок обработки сигнала оснащен интерфейсом. Лазер установлен таким образом, что угол падения потока инфракрасного излучения на анализируемый продукт равен 45o. Кроме того, лазер, усилитель, цифровой индикатор, микропроцессорный блок обработки сигнала и интерфейс объединены в единый моноблок. Измеритель влажности может также включать персональную электронно-вычислительную машину. Данный инфракрасный измеритель влажности сухих продуктов и материалов позволяет повысить точность контроля и уменьшить его габариты. 1 з.п.ф-лы, 1 ил.

Формула изобретения RU 2 113 711 C1

1. Инфракрасный измеритель влажности продуктов и материалов, включающий источник инфракрасного излучения, кювету для анализируемого продукта, светоприемник, усилитель, микропроцессорный блок обработки сигнала, цифровой индикатор, отличающийся тем, что в качестве источника инфракрасного излучения в него введен лазер, содержащий систему термостабильности, которая обеспечивает устойчивую полосу излучения от 1440 до 1445 нм, при этом он установлен таким образом, что угол падения потока инфракрасного излучения на анализируемую среду равен 45o, микропроцессорный блок обработки сигнала оснащен интерфейсом, а источник инфракрасного излучения, усилитель, цифровой индикатор и микропроцессорный блок обработки сигнала с интерфейсом объединены в единый моноблок. 2. Измеритель по п. 1, отличающийся тем, что он включает персональную электронно-вычислительную машину, связь которой с микропроцессорным блоком обработки сигнала осуществляется через интерфейс.

Документы, цитированные в отчете о поиске Патент 1998 года RU2113711C1

Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Брусиловский Л.П., Вайнберг А.Я
Приборы технологического контроля в м олочной промышленности
- М.: Агропромиздат, 1990, с
Способ приготовления сернистого красителя защитного цвета 1921
  • Настюков А.М.
  • Настюков К.И.
SU84A1
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
СПОСОБ ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ ВЛАГИ 0
SU280052A1
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. 1921
  • Богач Б.И.
SU3A1
Инфракрасный влагомер 1987
  • Торонджадзе Гурам Иванович
  • Торонджадзе Алевтина Аумовна
SU1467405A1
Очаг для массовой варки пищи, выпечки хлеба и кипячения воды 1921
  • Богач Б.И.
SU4A1
RU 94004619 А1, 20.10.95
Кипятильник для воды 1921
  • Богач Б.И.
SU5A1
Экономайзер 0
  • Каблиц Р.К.
SU94A1
Приспособление для точного наложения листов бумаги при снятии оттисков 1922
  • Асафов Н.И.
SU6A1
RU 94012655 А1, 10.12.95
Способ восстановления хромовой кислоты, в частности для получения хромовых квасцов 1921
  • Ланговой С.П.
  • Рейзнек А.Р.
SU7A1
ИНФРАКРАСНЫЙ ВЛАГОМЕР ДЛЯ ИЗМЕРЕНИЯ ВЛАЖНОСТИ КОНДЕНСАТОРНОЙ БУМАГИ 1991
  • Белкин Валерий Георгиевич[By]
  • Бычинов Евгений Владимирович[By]
  • Дрык Андрей Алексеевич[By]
  • Кухарчик Петр Дмитриевич[By]
  • Рубаник Владимир Владимирович[By]
  • Скурат Станислав Станиславович[By]
  • Скрипко Александр Степанович[By]
  • Титовицкий Иосиф Антонович[By]
RU2022257C1
Экономайзер 0
  • Каблиц Р.К.
SU94A1
Топка с несколькими решетками для твердого топлива 1918
  • Арбатский И.В.
SU8A1
US 4755678, 05.07.88
Разборный с внутренней печью кипятильник 1922
  • Петухов Г.Г.
SU9A1
СЕПАРАТОР ДЛЯ ИЗМЕЛЬЧЕННЫХ РЕЗИНОТКАНИЕВЫХ МАТЕРИАЛОВ 1994
  • Жирнов А.Г.
  • Лукасик В.А.
  • Голованчиков А.Б.
  • Гладышев Е.Г.
  • Жирнов Р.А.
  • Делаков А.Е.
RU2071844C1
Печь-кухня, могущая работать, как самостоятельно, так и в комбинации с разного рода нагревательными приборами 1921
  • Богач В.И.
SU10A1
Пуговица 0
  • Эйман Е.Ф.
SU83A1
Способ восстановления хромовой кислоты, в частности для получения хромовых квасцов 1921
  • Ланговой С.П.
  • Рейзнек А.Р.
SU7A1
Походная разборная печь для варки пищи и печения хлеба 1920
  • Богач Б.И.
SU11A1
Приспособление в пере для письма с целью увеличения на нем запаса чернил и уменьшения скорости их высыхания 1917
  • Латышев И.И.
SU96A1

RU 2 113 711 C1

Авторы

Брусиловский Леонид Петрович

Верников Михаил Аврамович

Стрепихеева Александра Николаевна

Фетисов Евгений Алексеевич

Харебов Владимир Георгиевич

Даты

1998-06-20Публикация

1997-12-26Подача