СПОСОБ РАСКИСЛЕНИЯ И МИКРОЛЕГИРОВАНИЯ СТАЛИ Российский патент 1998 года по МПК C21C7/00 

Описание патента на изобретение RU2114921C1

Изобретение относится к черной металлургии, а именно к технологии производства микролегированых сталей.

Известен способ производства ниобийсодержащей стали [1], согласно которому комплексную ниобийсодержащую лигатуру вводят на дно ковша, а металлический алюминий присаживают в процессе заполнения ковша жидким металлом до 2/3 его высоты. Способ направлен на повышение жидкотекучести и снижение свободной линейной усадки стали. Но вследствие того, что лигатура должна растворяться в нераскисленном металле, такой способ приводит к повышенному угару ниобия и других компонентов лигатуры. Возможна также потеря части лигатуры в виде нерастворившихся кусков, остающихся на дне ковша.

Известен способ раскисления и микролегирования низколегированной малоуглеродистой стали [2]. Способ позволяет определить расчетным путем минимальное количество ниобия, требующегося для микролегирования с целью обеспечения повышенной ударной вязкости стали. Недостаток способа заключается в том, что в нем не даны технологические параметры, обеспечивающие снижение угара ниобия.

Наиболее близким по технической сущности и достигаемому результату к предлагаемому способу является способ микролегирования и модифицирования стали массового назначения, согласно которому ввод микролегирующих материалов осуществляется после присадки и усвоения всех легирующих раскислителей [3] . Такая технология должна способствовать снижению угара циркония, церия, ниобия, титана, ванадия и др. микродобавок. Однако при позднем вводе этих элементов снижения угара может не произойти в результате увеличения содержания кислорода в металле в процессе выпуска. Ввод этих микродобавок в спокойный металл может также привести к потерям из-за неполного их расплавления (растворения) в ковше.

Поставлена задача создать способ раскисления и микролегиования стали, обеспечивающий повышение комплекса ее механических свойств при одновременном снижении угара микродобавок, в частности ниобия.

Поставленная задача достигается тем, что в известном способе раскисления и микролегирования стали, включающем ввод в металл кремния, марганца, алюминия и микролегирующих добавок, ниобий, титан и цирконий вводят одновременно с частью потребного количества алюминия после присадки кремния и марганца при соблюдении соотношения Nb : Σ (Ti, Zr, Al) = 1,0 - 2,5, после чего производят окончательное раскисление металла алюминием.

Сущность заявляемого способа раскисления и микролегирования заключается в том, что после раскисления кремнием и марганцем в металл одновременно вводят потребное для микролегирования количество ниобия, а также титан, цирконий и часть алюминия, исходя из соотношения Nb : Σ (Ti, Zr, Al) = 1,0 - 2,5, а затем производят присадку остальной части алюминия, требующегося для окончательного раскисления стали заданной марки.

Сопоставительный анализ предлагаемого технического решения и прототипа показывает, что предлагаемый способ раскисления и микролегирования стали отличается от прототипа тем, что микродобавки вводятся на более ранней стадии в недораскисленный металл и одновременно с частью алюминия при соблюдении соотношения Nb : Σ (Ti, Zr, Al) = 1,0 - 2,5, после чего проводится окончательное раскисление оставшимся количеством алюминия. Такая технология приводит к снижению потерь микродобавок при раскислении, а в результате комплексного микролегирования ниобием, титаном и цирконием значительно повышается уровень механических свойств стали. Таким образом данное техническое решение соответствует критерию "новизна".

Анализ патентов и научно-технической информации не выявил использования новых существенных признаков, предлагаемых в заявляемом решении, по их функциональному назначению. Таким образом предлагаемое изобретение соответствует критерию "изобретательский уровень".

Предлагаемые параметры технологии установлены экспериментальным путем. Найденное решение применимо для малоуглеродистых и среднеуглеродистых сталей, так как известно, что микролегирование ниобием высокоуглеродистых сталей малоэффективно. Выбранное содержание ниобия в сталях в количестве 0,02 - 0,05% объясняется тем, что заметное влияние малых добавок ниобия на прочностные свойства проявляется при его вводе > 0,01%, а максимальный эффект достигается при 0,05% [4].

Опытные плавки стали 12ГС проведены в двухванной печи садкой 2х250 т с раскислением и легированием в ковше. Начиная с наполнения ковша на 1/5 высоты в металл присаживали марганец и кремний в виде силикомарганца и ферросилиция из расчета получения заданного содержания марганца и кремния в готовой стали, затем ферросплавы, содержащие ниобий, титан, цирконий, а также часть алюминия. Последним вводили оставшийся алюминий при общем расходе алюминия 1 кг/т стали. Плавку-прототип раскисляли следующим образом. Ферросплавы, содержащие ниобий, цирконий, титан присаживали после ввода всего потребного количества марганца, кремния и алюминия. Металл всех плавок был прокатан на лист толщиной 10 мм. Результаты опытных плавок приведены в таблице.

Приведенные в таблице данные показывают, что соблюдение технологии по предлагаемому способу раскисления и микролегирования стали позволяет значительно снизить угар ниобия и получить оптимальный комплекс механических свойств проката.

Похожие патенты RU2114921C1

название год авторы номер документа
СПОСОБ МИКРОЛЕГИРОВАНИЯ НИЗКОУГЛЕРОДИСТОЙ СТАЛИ 1997
  • Комратов Ю.С.
  • Кузовков А.Я.
  • Ильин В.И.
  • Чернушевич А.В.
  • Рыскина С.Г.
  • Смирнов Л.А.
  • Спирин С.А.
  • Ровнушкин В.А.
  • Данилин Ю.А.
  • Одиноков С.Ф.
RU2127322C1
СПОСОБ ПРОИЗВОДСТВА СТАЛИ В ДУГОВЫХ ПЕЧАХ 1995
  • Куликов В.В.
  • Мулько Г.Н.
  • Сенин В.Т.
  • Тарынин Н.Г.
  • Кулаков В.В.
  • Артамонов В.И.
  • Павленко А.И.
  • Москаленко В.А.
  • Милюц В.Г.
  • Павлов В.В.
  • Востриков В.Г.
  • Куликов В.Н.
  • Скачков О.А.
  • Ключанский В.М.
RU2096489C1
СПОСОБ ПРОИЗВОДСТВА СТАЛИ 2003
  • Носов С.К.
  • Рябов И.Р.
  • Крупин М.А.
  • Кушнарев А.В.
  • Ильин В.И.
  • Данилин Ю.А.
  • Галченков В.В.
  • Шеховцов Е.В.
  • Кромм В.В.
  • Шур Е.А.
  • Никитин С.В.
RU2233339C1
СПОСОБ РАСКИСЛЕНИЯ, МИКРОЛИГИРОВАНИЯ И МОДИФИЦИРОВАНИЯ РЕЛЬСОВОЙ СТАЛИ 1991
  • Фомин Н.А.
  • Гордиенко М.С.
  • Паляничка В.А.
  • Волков И.Г.
  • Монастырский В.Я.
  • Могильный В.В.
  • Краснорядцев Н.Н.
  • Дементьев В.П.
  • Кочетова Г.С.
  • Анашкин Н.С.
  • Яковлев В.Г.
  • Дъяконов В.Н.
  • Строков И.П.
RU2033433C1
СПОСОБ ПРОИЗВОДСТВА НИЗКОУГЛЕРОДИСТОЙ СПОКОЙНОЙ СТАЛИ 1997
  • Кузовков А.Я.
  • Ильин В.И.
  • Петренко Ю.П.
  • Чернушевич А.В.
  • Егоров В.Д.
  • Опарина А.А.
  • Андронов В.А.
  • Щербаков В.Ю.
  • Власов А.А.
  • Исупов Ю.Д.
  • Пилипенко В.Ф.
RU2109074C1
СПОСОБ ЛЕГИРОВАНИЯ И МИКРОЛЕГИРОВАНИЯ НИЗКОЛЕГИРОВАННОЙ МАЛОУГЛЕРОДИСТОЙ СТАЛИ 1995
  • Киричков А.А.
  • Дерябин А.А.
  • Новолодский В.П.
  • Агеенко Ю.Я.
  • Рыскина С.Г.
  • Ильин В.И.
  • Зильбер Г.И.
  • Спирин С.А.
  • Урицкий М.Р.
RU2095426C1
СПОСОБ МИКРОЛЕГИРОВАНИЯ УГЛЕРОДИСТОЙ СТАЛИ ВАНАДИЕМ 1999
  • Шевцов А.Л.
  • Кузовков А.Я.
  • Крупин М.А.
  • Ильин В.И.
  • Ровнушкин В.А.
  • Чернушевич А.В.
  • Спирин С.А.
  • Рыскина С.Г.
  • Фетисов А.А.
  • Беленький Б.З.
  • Срогович И.М.
  • Егоров А.Л.
  • Петренко Ю.П.
  • Егоров В.Д.
RU2153005C1
СПОСОБ РАСКИСЛЕНИЯ И ЛЕГИРОВАНИЯ ВАНАДИЙСОДЕРЖАЩЕЙ СТАЛИ 1995
  • Ляпцев В.С.
  • Милютин Н.М.
  • Фетисов А.А.
  • Чернушевич А.В.
  • Киричков А.А.
  • Комратов Ю.С.
  • Петренев В.В.
  • Криночкин Э.В.
  • Беловодченко А.И.
  • Куклинский М.И.
  • Заболотный В.В.
  • Александров Б.Л.
RU2064509C1
Способ производства огнестойкой стали 2023
  • Лобашев Александр Игоревич
  • Юлов Владимир Николаевич
  • Глухов Павел Александрович
  • Мезин Филипп Иосифович
  • Кузнецов Денис Валерьевич
RU2807799C1
СПОСОБ РАСКИСЛЕНИЯ, МОДИФИЦИРОВАНИЯ И МИКРОЛЕГИРОВАНИЯ ВАНАДИЕМ СТАЛИ 1997
  • Комратов Ю.С.
  • Кузовков А.Я.
  • Чернушевич А.В.
  • Ильин В.И.
  • Ляпцев В.С.
  • Фетисов А.А.
  • Исупов Ю.Д.
  • Одиноков С.Ф.
  • Пилипенко В.Ф.
  • Федоров Л.К.
  • Кромм В.В.
RU2120477C1

Иллюстрации к изобретению RU 2 114 921 C1

Реферат патента 1998 года СПОСОБ РАСКИСЛЕНИЯ И МИКРОЛЕГИРОВАНИЯ СТАЛИ

Изобретение относится к черной металлургии, а именно к технологии производства микролегированных сталей. Ниобий, титан и цирконий для микролегирования вводят одновременно с частью потребного количества алюминия после присадки кремния и марганца при соблюдении соотношения Nb: Σ(Ti,Zr,Al) = 1,0 - 2,5. Затем производят окончательное раскисление алюминием. Технический результат - снижение угара ниобия и получение оптимального комплекса механических свойств проката. 1 табл.

Формула изобретения RU 2 114 921 C1

Способ раскисления и микролегирования стали, включающий ввод в металл кремния, марганца, алюминия и микролегирующих добавок, отличающийся тем, что в качестве микролегирующих добавок в металл вводят ниобий, титан и цирконий, при этом микролегирующие добавки вводят одновременно с частью потребного количества алюминия после присадки кремния и марганца при соблюдения отношения Nb к Σ (Ti, Zr, Al) 1,0 - 2,5, после чего производят окончательное раскисление алюминием.

Документы, цитированные в отчете о поиске Патент 1998 года RU2114921C1

SU, 1514796, C 21 C 5/28, 1991
RU, 1772171, C 21 C 7/06, 1994
Пилюшенко В.Л
и др
Технологические аспекты микролегирования и модифицировани я ста ли массового назначения
- Сталь, N 5, 1990, с.35 - 39
Меськин В.С
Основ ы легирования стали
- М.: Металлургия, 1964.

RU 2 114 921 C1

Авторы

Маскаленко В.А.

Павлов В.В.

Милюц В.Г.

Рыскина С.Г.

Ровнушкин В.А.

Спирин С.А.

Кулаков В.В.

Павлушин Н.В.

Павлов С.Е.

Сенин В.Т.

Швалев В.А.

Тарынин Н.Г.

Даты

1998-07-10Публикация

1996-09-19Подача