Изобретение относится к способам нагрева жидкости и может применяться для нагрева воды в системах отопления и горячего водоснабжения.
Известен способ нагрева жидкости [1], включающий преобразование механической энергии вращающегося тела, например металлического диска, в тепловую путем трения о неподвижное тело и отвод теплоты от трущихся тел жидкой нагреваемой средой. Способ обеспечивает преобразование механической энергии в теплоту жидкого теплоносителя, но обладает низкими производительностью и надежностью, связанными с фрикционным износом рабочих органов.
Известен также способ нагрева жидкости [2], являющийся прототипом заявляемого технического решения. Способ-прототип заключается в обработке жидкости акустическим полем, вырабатываемом в роторно-пульсационном аппарате. В рабочем зазоре роторно-пульсационного аппарата возникают высокочастотные акустические колебания, кавитационные явления, вязкое трение попутных потоков жидкости у ротора и статора, сопровождающиеся выделением теплоты. При этом температура жидкости прямо пропорциональна подводимой механической мощности и обратно пропорциональна удельной теплоемкости жидкости, плотности и объемной производительности аппарата.
Недостатком способа-прототипа является низкая энергетическая эффективность процесса. В настоящее время отсутствует адекватная теория для описания процессов, происходящих в роторно-пульсационном аппарате. Существующая теоретическая модель не учитывает ряд важных параметров и явлений, что приводит к неэффективному - вне рамок возможного резонансного режима - использованию роторно-пульсационного аппарата.
Задача настоящего изобретения - повышение энергетической эффективности процесса путем оптимизации режимов работы.
Применение предлагаемого способа позволит повысить энергетическую эффективность процесса преобразования механической энергии в теплоту за счет нового технического результата - усиления кавитационного режима работы роторно-пульсационного аппарата на резонансной частоте пульсаций потока жидкости через активные элементы роторно-пульсационного аппарата.
Заявленное техническое решение заключается в том, что обработку потока жидкости акустическим полем проводят в диапазоне частоты пульсации потока жидкости через роторно-пульсационный аппарата 3,8 - 4,8 кГц.
Заявленное техническое решение отличается от прототипа тем, что обработку потока жидкости акустическим полем проводят в диапазоне частоты пульсации потока жидкости через аппарат 3,8 - 4,8 кГц.
Сущность заявляемого технического решения заключается в том, что экспериментально выявлен диапазон частот пульсации потока жидкости в роторно-пульсационном аппарате, в пределах которого имеет место резонансный режим кавитационного явления, сопровождающийся выделением теплоты.
На фиг. 1 схематически изображена установка для осуществления способа; на фиг. 2 показана экспериментально полученная зависимость коэффициента преобразования энергии в относительных единицах от частоты пульсации потока жидкости через роторно-пульсационный аппарат.
Способ может быть реализован в установке (фиг. 1), которая включает роторно-пульсационный аппарат с корпусом 1, статором 2, ротором 3, крыльчаткой 4 и приводом 5, а также резервуар 6 и трубопроводы 7. При этом вход и выход роторно-пульсационного аппарата соединены трубопроводами 7 с резервуаром-аккумулятором теплоты 6.
Способ осуществляется следующим образом. В резервуар-аккумулятор теплоты 6 заливают нагреваемую жидкость, например воду. Включают привод 5, который вращает ротор 3 и крыльчатку 4, при этом крыльчатка 4 обеспечивает динамический напор воды в активной зоне, а ротор 3, периодически перекрывая окна статора 2, обеспечивает пульсацию потока жидкости с частотой, определяемой частотой вращения ротора и количеством отверстий-окон в роторно-статорной паре. При работе в диапазоне частот от 3,8 кГц до 4,8 кГц начинается усиление кавитации и увеличение выхода теплоты.
При этом в области частот пульсации потока жидкости через роторно-пульсационный аппарат от 3,8 до 4,8 кГц наблюдается возрастание эффективности преобразования энергии. Результаты экспериментов по нагреву жидкости в установке, приведенной на фиг. 1, приведены в таблице, где приняты следующие обозначения: F - частота пульсации потока жидкости, Гц; Qт - тепловая мощность, выделяемая при осуществлении заявляемого способа нагрева жидкости, кДж/ч; N - механическая мощность, затрачиваемая на вращение ротора роторно-пульсационного аппарата, кДж/ч; M = Qт/N - коэффициент преобразования энергии, относительные единицы.
Применение заявляемого способа позволит повысить энергетическую эффективность процесса преобразования механической энергии вращающегося вала в теплоту рабочей жидкости в 6 - 7 раз по сравнению с преобразованием энергии трением за счет оптимизации режима работы.
название | год | авторы | номер документа |
---|---|---|---|
ДИСПЕРГАТОР | 1996 |
|
RU2139140C1 |
СПОСОБ НАГРЕВА ЖИДКОСТИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2023 |
|
RU2826847C1 |
Роторно-импульсный аппарат и способ его эксплуатации | 2018 |
|
RU2695193C1 |
КАВИТАЦИОННЫЙ ТЕПЛОГЕНЕРАТОР | 2005 |
|
RU2334177C2 |
СПОСОБ НЕПРЕРЫВНОГО РАЗДЕЛЕНИЯ НЕФТЕСОДЕРЖАЩЕГО ГРУНТА | 1998 |
|
RU2139143C1 |
СПОСОБ ВЫРАЩИВАНИЯ РАССАДЫ | 1997 |
|
RU2145473C1 |
СПОСОБ ПРИГОТОВЛЕНИЯ МНОГОКОМПОНЕНТНЫХ УЛЬТРАДИСПЕРСНЫХ СУСПЕНЗИОННЫХ И ЭМУЛЬСИОННЫХ БИОТОПЛИВ И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2013 |
|
RU2539978C1 |
СЕЛЬСКОХОЗЯЙСТВЕННЫЙ УБОРОЧНЫЙ КОМБАЙН | 2001 |
|
RU2214083C2 |
СПОСОБ ОЦЕНКИ ТЕХНИЧЕСКОГО СОСТОЯНИЯ РЕГУЛЯТОРА ТОПЛИВНОГО НАСОСА ДИЗЕЛЯ | 1991 |
|
RU2008639C1 |
УСТРОЙСТВО ДЛЯ ФИЗИКО-ХИМИЧЕСКОЙ ОБРАБОТКИ ЖИДКОЙ СРЕДЫ | 2010 |
|
RU2434674C1 |
Способ нагрева жидкости предназначен для использования в системах отопления и горячего водоснабжения. Для усиления кавитационного режима работы роторно-пульсационного аппарата на резонансной частоте пульсации потока жидкости через активные элементы роторно-пульсационного аппарата обработку потока жидкости проводят акустическим полем в диапазоне частоты пульсации потока жидкости 3,8-4,8 кГц. 1 табл. 2 ил.
Способ нагрева жидкости, включающий обработку жидкости акустическим полем, вырабатываемым, например, в роторно-пульсационном аппарате, отличающийся тем, что обработку проводят в диапазоне частоты пульсаций потока жидкости через аппарат 3,8 - 4,8 кГц.
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
SU, авторское свидетельство N 1627790, кл | |||
Пишущая машина для тюркско-арабского шрифта | 1922 |
|
SU24A1 |
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
Балаб удкин М.А | |||
Роторно-пульсационные аппараты в химико-фармацевтической промыш ленности | |||
- М.: Медицина, 1983, с | |||
Способ запрессовки не выдержавших гидравлической пробы отливок | 1923 |
|
SU51A1 |
Авторы
Даты
1998-07-27—Публикация
1996-05-29—Подача