Изобретение относится к технологии обработки горюче-смазочных материалов, в частности к модификации их эксплуатационных свойств.
Известен способ модификации горюче-смазочных материалов, включающий воздействие на горюче-смазочные материалы переменного магнитного поля (авт.св. СССР 362042, 1973).
К недостаткам известного способа следует отнести очень низкую эффективность обработки, связанную с недостаточной степенью упорядоченности молекул материала после обработки, и быструю потерю приобретенных материалом свойств.
Известен модификатор горюче-смазочных материалов, включающий трубопровод с входным и выходным патрубками и установленный на нем многополюсный постоянный магнит (авт.св. СССР 968502, F 02 M 27/04, 1980).
Этот модификатор обладает низким КПД и не обеспечивает достаточной степени переориентации молекул обрабатываемого материала, что не позволяет достичь высоких показателей улучшенных потребительских свойств горюче-смазочных материалов.
Задача настоящего изобретения - улучшение эксплуатационных свойств горюче-смазочных материалов, таких как полнота сгорания топлива, моющие свойства, уменьшение содержания вредных выбросов в отработавших газах.
Согласно способу поставленная задача достигается тем, что частоту переменного магнитного поля непрерывно изменяют от начала обработки к концу.
В соответствии с устройством поставленная задача решается тем, что трубопровод выполнен в виде спирали, а магнит выполнен в виде двух кольцевых пластин, намагниченных перпендикулярно магнитному азимуту, каждая из которых лежит в плоскости, параллельной плоскости спирали, причем одна из пластин расположена с одной стороны спирали, а другая - с противоположной.
Указанные признаки существенны, изменение частоты магнитного поля в процессе обработки приводит к значительному снижению сил поверхностного натяжения в углеводородных жидкостях, активному перемешиванию потока, что обеспечивает улучшение смазывающих и моющих свойств масел, моющих свойств топлива (для очистки камеры сгорания), а также существенно увеличивает полноту сгорания за счет лучшего контакта топлива с кислородом.
Выполнение трубопровода в виде спирали с расположенными с обеих сторон кольцевыми многополюсными магнитами обеспечивает обработку горюче-смазочных материалов в постоянно изменяющемся по частоте магнитном поле в процессе передвижения жидкости по трубопроводу.
Способ иллюстрируется следующими примерами.
Пример 1. Топливо, в частности бензин, помещают в переменное магнитное поле. Частоту поля непрерывно увеличивают с начала обработки до конца.
Молекулы бензина приобретают магнитный момент, направленный противоположно магнитному моменту поля, многократное изменение частоты последнего обеспечивает внутреннее перемешивание потока, снижение сил поверхностного натяжения. Последнее уменьшает нагарообразование в камере сгорания и повышает полноту сгорания топлива.
Пример 2. Смазывающее масло, в частности моторное, обрабатывают так же, как в примере 1. В результате уменьшения сил поверхностного натяжения улучшается приникающая способность масла, оно лучше удерживается на трущихся поверхностях, а также улучшаются его моющие свойства.
На фиг.1 представлен модификатор горюче-смазочных материалов, общий вид; на фиг.2 - разрез А-А на фиг.1; на фиг.3 - схема воздействия магнитного поля на поток жидкости в модификаторе; на фиг.4 - график зависимости содержания окиси углерода в отработавших газах от наработки двигателя с установленным в нем модификатором.
Модификатор содержит корпус 1, внутри которого расположены в параллельных плоскостях два многополюсных магнита, выполненных в виде кольцевых пластин 2 и 3. Между последними расположен трубопровод 4 в виде спирали, имеющий входной 5 и выходной 6 патрубки. Трубопровод 4 может иметь форму любой плоской спирали, например Архимедовой спирали, логарифмической, параболической или спирали Ферми. Трубопровод 4 выполнен из немагнитного материала.
Модификатор работает следующим образом.
Топливо или смазочное масло поступает в трубопровод 4 и, проходя по нему, пересекает силовые линии магнитного поля, создаваемого многополюсными магнитами 2 и 3. По мере продвижения жидкости к центру спирали скорость потока возрастает, соответственно возрастает частота смены полюсов магнитов.
Модифицированное топливо или смазочное масло выходит из патрубка 6 и поступает к потребителю.
Как видно из фиг.4, в начальный период после установки очистителя катализатора (точка А) наблюдается повышение (до 30%) содержания СО в отработавших газах (период A-B), что объясняется интенсивной очисткой камеры сгорания от нагарообразования. Продолжительность периода интенсивной очистки камеры сгорания составляет на карбюраторных двигателях автомобилей Fiat Uno, ВАЗ и ГАЗ различных модификаций от 50 до 100 км пробега, на дизельных от 1 до 6 часов работы. Затем происходит снижение содержания СО (период B-C-D) и переход к периоду стабилизации (точка D), когда продолжается очистка камеры сгорания с меньшей интенсивностью. Наконец наблюдается стабилизация процесса сгорания топлива (за точкой D) при значительном уменьшении токсичности отработавших газов. Продолжительность работы двигателей до периода стабилизации составляет от 1 до 6 часов. Синхронно с изменением содержания CO в отработавших газах изменяется и расход топлива. Однако динамика расхода топлива характеризуется меньшей интенсивностью по сравнению с изменением содержания CO. Реальные значения снижения расхода топлива в стендовых условиях испытаний достигает 6 - 8%, в эксплуатационных - до 10% и более. Дымность отработавших газов дизельного двигателя на холостом ходу снижается в 2 - 3 раза и достигает значений 1 - 3% (на примере двигателя Д-240). Содержание CO в отработавших газах легковых автомобилей в результате дорожных испытаний уменьшилось на 40% и более, достигло значений 0,3 - 0,7%, что в 2 - 3 и более раз меньше установленных экологических норм (содержание CO - 1,5%). Содержание CH в отработавших газах уменьшается аналогично уменьшению CO.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ОБРАБОТКИ ЖИДКОГО ТОПЛИВА | 1999 |
|
RU2155878C2 |
УСТРОЙСТВО ДЛЯ ОБРАБОТКИ ЖИДКОГО И ГАЗООБРАЗНОГО ТОПЛИВА | 2001 |
|
RU2194876C2 |
СПОСОБ ОБРАБОТКИ ЖИДКИХ УГЛЕВОДОРОДОВ И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2000 |
|
RU2179572C1 |
СПОСОБ ОЧИСТКИ ЖИДКИХ УГЛЕВОДОРОДОВ ОТ СЕРЫ И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2003 |
|
RU2235114C1 |
МНОГОФУНКЦИОНАЛЬНАЯ ДОБАВКА К УГЛЕВОДОРОДСОДЕРЖАЩЕМУ ТОПЛИВУ И ТОПЛИВНАЯ КОМПОЗИЦИЯ, ЕЕ СОДЕРЖАЩАЯ | 2013 |
|
RU2524955C1 |
СПОСОБ ОБРАБОТКИ ГОРЮЧЕСМАЗОЧНЫХ МАТЕРИАЛОВ, ПРЕИМУЩЕСТВЕННО УГЛЕВОДОРОДОВ, УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ И ПРИСПОСОБЛЕНИЕ ДЛЯ НАМАГНИЧИВАНИЯ ГОРЮЧЕСМАЗОЧНЫХ МАТЕРИАЛОВ | 1996 |
|
RU2118690C1 |
СОСТАВ ГЕЛЕПОДОБНОГО КОНЦЕНТРАТА, ИЗВЛЕКАЕМОГО ПРИ ОБРАБОТКЕ УГЛЕВОДОРОДНЫХ МАСЕЛ | 2009 |
|
RU2393202C1 |
Многофункциональная комплексная присадка к топливам | 2015 |
|
RU2609767C1 |
МНОГОФУНКЦИОНАЛЬНАЯ ПРИСАДКА К БЕНЗИНУ | 2009 |
|
RU2427614C1 |
Многофункциональная присадка к автомобильным бензинам | 2016 |
|
RU2616624C1 |
Изобретение относится к технологии обработки горюче-смазочных материалов, в частности бензина и моторного масла. Способ заключается в обработке горюче-смазочных материалов переменным магнитным полем, частота которого непрерывно увеличивается от начала обработки к концу. Модификатор состоит из свернутого в спираль трубопровода, по которому проходит поток горюче-смазочных материалов, и двух кольцевых многополюсных магнитов, расположенных с обеих сторон спирали. Изобретение позволяет улучшить эксплуатационные свойства горюче-смазочных материалов. 2 с.п.ф-лы, 4 ил.
Устройство для омагничивания потока топливной смеси двигателя внутреннего сгорания | 1978 |
|
SU968502A1 |
•СЕССЮЗНАЯ It | 0 |
|
SU362042A1 |
СПОСОБ ОБРАБОТКИ ТОПЛИВА | 1992 |
|
RU2038506C1 |
МАГНИТНЫЙ АКТИВАТОР ЖИДКИХ ТОПЛИВ | 1994 |
|
RU2082897C1 |
СПОСОБ ПОЛУЧЕНИЯ СТАЛЬНОГО СЛИТКА | 2005 |
|
RU2295421C2 |
US 3976726 A, 24.08.76 | |||
Устройство для создания нагрузки на долото | 1976 |
|
SU644934A1 |
Авторы
Даты
1998-11-10—Публикация
1997-07-03—Подача