СПОСОБ БИОТЕСТИРОВАНИЯ ТОКСИЧНОСТИ ВОДНОЙ СРЕДЫ Российский патент 1998 года по МПК G01N33/18 

Описание патента на изобретение RU2123693C1

Изобретение относится к области биологии и экологии, может быть использовано для биологического контроля токсичности водных сред.

Известен способ биотестирования токсичности сточных вод путем регистрации у рыб электрокардиограммы и измерения RR-интервалов (см. а.с. N 1573376, кл. G 01 N 33/18). Недостатком способа является длительность проведения анализа.

Известен способ оценки токсичности различных веществ сточных и природных вод по изменению формы клетки водоросли (см. а.с. СССР N 866470, кл. G 01 N 33/18). Недостатком является ограниченный диапазон контролируемых концентраций токсиканта, достаточно длительный процесс проведения анализа (более 15 мин) и его субъективность.

Известен способ биологической оценки токсичности воды по изменению двигательной активности дафний в эталонной (нетоксичной) и контрольной (токсичной) средах (см. а.с. СССР N 1413525, кл. G 01 N 33/18). Однако данный способ не дает достоверных данных о степени токсичности водной среды вследствие неоднозначности поведения дафний в зависимости от вида веществ и их концентрации, поскольку их двигательная активность может как увеличиваться, так и уменьшаться.

Известен способ для биологического контроля токсичности сточных вод, основанный на изменении светового потока вследствие сокращения грудных ножек или сердца у дафний, которые вызывают изменение электрических характеристик фотодатчика (см. Колупаев Б. И., Андреев А.А., Самойленко Ю.К. Оптический метод регистрации сердечного ритма у дафний. - Гидробиологический журнал, т. XIII, вып. 3, 1977, с. 119 - 120). Однако способ недостаточно информативен.

Наиболее близким по технической сущности к предлагаемому является метод биотестирования по изменению дыхания и сердечной деятельности у дафний под влиянием токсических веществ. Через тело дафнии пропускают световой поток, который изменяется в результате сокращения сердца или движения грудных ножек. Регистрируют частоту дыхания и сердечных сокращения. Уменьшение или увеличение светового потока вызывает изменение силы тока на фотоприемнике, изменение электрических характеристик фотоприемника усиливается и регистрируется на электрокардиографе. За показатель токсичности принимается достоверное отклонение (P<0,05) ритма дыхания или сердцебиений от контроля (см. Колупаев Б.И. Методы биотестирования по изменению дыхания и сердечной деятельности у дафний. - Методы биотестирования вод, с. 103 - 104). Однако способ не достаточно достоверен.

Задача настоящего способа заключается в повышении достоверности (информативности) за счет большего числа исследуемых параметров.

Поставленная задача достигается тем, что в способе биотестирования токсичности водной среды путем сравнения изменений параметра вибрации контролируемой области биологического тест-объекта в процессе оптического облучения при помещении объекта в контрольную и анализируемую водные среды перед помещением в водную среду предотвращают движение тест-объекта как целого, оценивают период движения контролируемой области тест-объекта и определяют диапазон изменения основной частоты вибрации контролируемой области, формируют прямое и отраженное от исследуемой области объекта отражение, суммируют их и воздействуют им на источник излучения, регистрируют периодические изменения интенсивности излучения источника, выделяют из спектра зарегистрированного сигнала гармонику с максимальной амплитудой в заданном диапазоне изменений частоты вибраций, после чего определяют точное значение основной частоты вибраций, выделяют из спектра гармоники с максимальной амплитудой вблизи частот, кратных основной частоте вибраций, и по их набору судят о контрольных значениях формы движений контролируемой области тест-объекта, сравнивают со значениями формы движений в токсичной водной среде и по отклонению формы вибраций от контрольных значений судят о степени токсичности водной среды.

Предлагаемый способ поясняется чертежами:
фиг. 1 - схема экспериментальной установки, где 1 - прибор ночного видения, 2 - источник питания, 3 - канал для биообъекта, 4 - биообъект, 5 - прозрачный столик, 6 - линза, 7 - полупроводниковый лазер, 8 - источник тока, 9 - фотодетектор, 10 - усилитель, 11 - аналого-цифровой преобразователь, 12 - компьютер;
фиг. 2 - результаты измерений и обработки сигнала при отсутствии токсикантов в водной среде:
a - зависимость мгновенных значений нормированного продетектированного сигнала U от времени t; б - спектр продетектированного сигнала, нормированный на амплитуду гармоники Sn с максимальным значением. Частота сердцебиения составляет 410 уд/мин; в - зависимость мгновенных значений величины смещения сердца дафнии A от времени t;
фиг. 3 - результаты измерений и обработки сигнала при наличии фенола в водной среде (концентрация 5 мг/л):
a - зависимость мгновенных значений нормированного продетектированного сигнала U от времени t; б - спектр продетектированного сигнала, нормированный на амплитуду гармоники Sn с максимальным значением. Частота сердцебиения составляет 328 уд/мин; в - зависимость мгновенных значений величины смещения сердца дафнии A от времени t;
фиг. 4 - зависимость амплитуды биений A сердца дафнии от концентрации фенола N в водной среде.

Способ заключается в следующем:
тест-объект 3 помещают в водную среду и обездвиживают его путем помещения на прозрачную пластину 5 в камеру 4. Оценивают период движения контролируемой области тест-объекта, например, путем визуального подсчета числа периодов движения контролируемой области в единицу времени, и определяют диапазон изменения основной частоты вибраций. Направляют на контролируемую область тест-объекта 3 оптическое излучение от источника 7. Питание источника излучения 7 осуществляют от источника питания 8. С помощью линзы 6 добиваются точной фокусировки излучения. Суммируют прямое и отраженное от контролируемой области излучения и воздействуют им на источник излучения 7. Периодическое изменение интенсивности излучения источника (фиг. 2a) регистрируют фотоприемником 9, продетектированный сигнал с которого через усилитель 10 и аналого-цифровой преобразователь 11 подают в компьютер 12. Проводят обработку зарегистрированного сигнала так, что получают спектр зарегистрированного сигнала (фиг. 2б), выделяют из спектра сигнала гармонику с максимальной амплитудой в заданном диапазоне изменений частоты вибраций, по которой определяют контрольное значение основной частоты вибраций, выделяют из спектра гармоники с максимальной амплитудой вблизи частот, кратных основной частоте вибраций, и по их набору судят о контрольных значениях формы движений контролируемой области тест-объекта, помещают тест-объект в токсичную водную среду и определяют отклонение формы вибраций от контрольных значений, по величине отклонения судят о степени токсичности водной среды.

Пример практической реализации способа.

В качестве тест-объекта использовались пресноводные рачки дафнии (Daphnia magna Straus), культивируемые в стандартных лабораторных условиях. В экспериментах использовали особей двухсуточного возраста, размерами ≈ 1,0 мм.

В качестве токсического фактора использовали водный раствор фенола с концентрациями от 1,2 до 10 мг/л. Для контрольных измерений применялась вода, на которой дафнии культивировались.

Одиночную дафнию из аквариумной культуры помещали в прозрачную камеру, ограничивающую движения рачка как целого. С помощью оптического микроскопа "Биолам" фиксировали частоту биений сердца дафнии в контрольной среде, которая обычно варьируется в диапазоне 400 - 500 уд/мин (ударов в минуту).

В качестве источника излучения использовали полупроводниковый лазер ИЛПН-206 с длиной волны 1,3 мм. Сигнал со встроенного фотоприемника усиливали усилителем У4-28 и подавали на вход аналого-цифрового преобразователя ЭВМ.

На фиг. 2а, 3а приведены зависимости мгновенных значений величины продетектированного сигнала от времени при отсутствии токсикантов и наличии фенола в водной среде. На фиг. 2б, 3б представлены результаты расчета спектра продетектированного сигнала. Частота сердцебиения дафнии определяется основной частотой гармоники вычисленного спектра, а амплитуда колебаний - по набору спектральных гармоник [Усанов Д.А., Скрипаль А.В., Вагарин В.А., Васильев М.Р. Оптические гомодинные методы измерений // Зарубежная радиоэлектроника. 1995. N 6, с. 43 - 48]. На фиг. 2в, 3в приведены рассчитанные по результатам измерений зависимости мгновенных значений величины смещения сердца дафнии от времени при отсутствии и наличии фенола в водной среде. Как следует из фиг. 3, амплитуда биений сердца дафнии уменьшилась от значения 0,4 мкм в отсутствии токсикантов в водной среде до значения 0,2 мкм при наличии фенола в водной среде.

Амплитуда биений сердца дафнии регистрировалась после пятиминутной адаптации. На фиг. 4 приведена зарегистрированная в опытах зависимость амплитуды биений сердца дафнии от концентрации фенола в водной среде. Полученная зависимость была использована в качестве калибровочной кривой при проведении контроля степени токсичности водной среды.

Похожие патенты RU2123693C1

название год авторы номер документа
СПОСОБ ОПРЕДЕЛЕНИЯ ВЛИЯНИЯ ВРЕДНОГО ВОЗДЕЙСТВИЯ НА БИООБЪЕКТЫ 1999
  • Усанов Д.А.
  • Скрипаль А.В.
RU2155335C1
СПОСОБ ОПРЕДЕЛЕНИЯ АМПЛИТУД ВИБРАЦИЙ 2002
  • Усанов Д.А.
  • Скрипаль А.В.
RU2208769C1
СПОСОБ ИССЛЕДОВАНИЯ КОЛЕБАНИЙ 1994
  • Усанов Д.А.
  • Скрипаль А.В.
  • Вагарин В.А.
RU2097710C1
СПОСОБ ОПРЕДЕЛЕНИЯ ЧАСТОТЫ И АМПЛИТУДЫ БИЕНИЙ СЕРДЦА ДАФНИИ 2007
  • Усанов Дмитрий Александрович
  • Скрипаль Анатолий Владимирович
  • Абрамов Антон Валерьевич
  • Скрипаль Александр Владимирович
  • Усанов Андрей Дмитриевич
RU2357659C1
СПОСОБ ИССЛЕДОВАНИЯ ПЕРИОДИЧЕСКИХ КОЛЕБАНИЙ 1995
  • Усанов Д.А.
  • Скрипаль А.В.
  • Вагарин В.А.
  • Калинкин М.Ю.
RU2098776C1
СПОСОБ ИССЛЕДОВАНИЯ ДВИЖЕНИЯ ОБЪЕКТА 1997
  • Усанов Д.А.
  • Скрипаль А.В.
  • Гангнус С.В.
RU2133450C1
СПОСОБ ИЗМЕРЕНИЯ СКОРОСТИ ДВИЖЕНИЯ ОБЪЕКТА 2003
  • Усанов Д.А.
  • Скрипаль А.В.
  • Камышанский А.С.
RU2247395C1
Способ полевого биотестирования поверхностных вод на загрязненность нефтью и нефтепродуктами 2023
  • Гавкалюк Богдан Васильевич
  • Смирнов Алексей Сергеевич
  • Ивахнюк Сергей Григорьевич
  • Моторыгин Юрий Дмитриевич
  • Князев Александр Сергеевич
  • Ивахнюк Григорий Константинович
  • Агеев Павел Михайлович
RU2813895C1
СПОСОБ ОЦЕНКИ ТОКСИЧНОСТИ КОМПОНЕНТОВ СРЕДЫ АЗОВСКОГО И ЧЕРНОГО МОРЕЙ 2013
  • Афанасьев Дмитрий Федорович
  • Цыбульский Игорь Евгеньевич
RU2519070C1
СПОСОБ ОЦЕНКИ ТОКСИЧНОСТИ ЗАГРЯЗНИТЕЛЕЙ ВОД ДАЛЬНЕВОСТОЧНЫХ МОРЕЙ 2001
  • Черкашин С.А.
  • Никифоров М.В.
RU2215290C2

Иллюстрации к изобретению RU 2 123 693 C1

Реферат патента 1998 года СПОСОБ БИОТЕСТИРОВАНИЯ ТОКСИЧНОСТИ ВОДНОЙ СРЕДЫ

Способ применим для биологического контроля токсичности водных сред. В способе биотестирования токсичности водной среды путем сравнения изменений параметра вибрации контролируемой области биологического тест-объекта в процессе оптического облучения при помещении объекта в контрольную и анализируемую водные среды перед помещением в водную среду предотвращают движение тест-объекта как целого, оценивают период движения контролируемой области тест-объекта и определяют диапазон изменения основной частоты вибрации контролируемой области, формируют прямое и отраженное от исследуемой области объекта отражение, суммируют их и воздействуют им на источник излучения, регистрируют периодические изменения интенсивности излучения источника, выделяют из спектра зарегистрированного сигнала гармонику с максимальной амплитудой в заданном диапазоне изменений частоты вибрации, после чего определяют точное значение основной частоты вибрации, выделяют из спектра гармоники с максимальной амплитудой вблизи частот, кратных основной частоте вибрации, и по их набору судят о контрольных значениях формы движений контролируемой области тест-объекта, сравнивают со значениями формы движений в токсичной водной среде и по отклонению формы вибрации от контрольных значений судят о степени токсичности водной среды. Достигается повышение достоверности (информативности) за счет большего числа исследуемых параметров. 4 ил.

Формула изобретения RU 2 123 693 C1

Способ биотестирования токсичности водной среды путем сравнения изменений параметра вибрации контролируемой области биологического тест-объекта в процессе оптического облучения при помещении объекта в контрольную и анализируемую водные среды, отличающийся тем, что перед помещением в водную среду предотвращают движение тест-объекта как целого, оценивают период движения контролируемой области тест-объекта и определяют диапазон изменения основной частоты вибрации контролируемой области, формируют прямое и отраженное от исследуемой области объекта отражение, суммируют их и воздействуют им на источник излучения, регистрируют периодические изменения интенсивности излучения источника, выделяют из спектра зарегистрированного сигнала гармонику с максимальной амплитудой в заданном диапазоне изменений частоты вибраций, после чего определяют точное значение основной частоты вибраций, выделяют из спектра гармоники с максимальной амплитудой вблизи частот, кратных основной частоте вибраций, и по их набору судят о контрольных значениях формы движений контролируемой области тест-объекта, сравнивают со значением формы движений в токсичной водной среде и по отклонению формы вибраций от контрольных значений судят о степени токсичности водной среды.

Документы, цитированные в отчете о поиске Патент 1998 года RU2123693C1

Колупаев Б.И
Методы биотестирования вод
- Черноголовка, 1988, с
Клапанный регулятор для паровозов 1919
  • Аржанников А.М.
SU103A1
SU, 840919 A, 30.06.81
SU, 959089 A, 15.09.82
SU, 1068083 A, 23.01.84
SU, 1112276 A, 07.09.84
SU, 1234770 A1, 30.04.86
SU, 1283654 A2, 15.01.87
SU, 1702304 A1, 30.12.91
SU, 1784917 A1, 30.12.92.

RU 2 123 693 C1

Авторы

Усанов Д.А.

Скрипаль А.В.

Вагарин А.Ю.

Скрипаль А.В.

Потапов В.В.

Шмакова Т.Т.

Мосияш С.С.

Даты

1998-12-20Публикация

1997-12-08Подача