Предлагаемое изобретение относится к производству строительных материалов и может быть использовано для изготовления стеновых изделий.
Известна сырьевая смесь для изготовления керамических изделий, включающая отходы производства ферросилиция, суглинок и химическую добавку [1]. Однако изделия из предложенной массы характеризуются высокой средней плотностью, а следовательно, ухудшенными теплозащитными свойствам.
Наиболее близкой к предлагаемой сырьевой смеси по технической сущности и достигаемому эффекту является сырьевая смесь, включающая, мас.%: 60...85% золы сухого отбора Томь-Усинской ГРЭС и 40...15% тонкодисперсных отходов ферросилиция [2] . Недостатком указанной смеси является относительно низкая прочность обоженных изделий.
Изобретением решается задача повышения прочности обоженных изделий.
Технический результат достигается тем, что в сырьевой смеси в качестве кремнеземистой пыли используется микрокремнезем производства кристаллического кремния, а в качестве алюмосиликатного компонента глиежи при следующем соотношении компонентов, мас.%:
Глиежи - 42 - 83
Микрокремнезем производства кристаллического кремния - 58 - 17
Микрокремнезем производства кристаллического кремния представляет собой многотоннажный отход, большая часть которого в настоящее время не находит себе какого-либо рационального применения. Удельная поверхность микрокремнезема - более 25 тыс. см2/г.
Преимущественный размер частиц этого отхода составляет 0,1...3 мкм. По существующей технологической схеме микрокремнезем осаждается в электрофильтрах системы газоочистки плавильных печей производства кристаллического кремния, после чего удаляется в виде водной суспензии в шламохранилище.
Микрокремнезем производства кристаллического кремния является аморфным материалом и имеет следующий химический состав, мас.%:
SiO2 - 90...95
Al2O - до 0.8
Fe2O - до 0.8
CaO - до 1.6
MgO - до 1.2
K+ - до 0.25
Na+ - до 0.06
SiC - до 5
Собщ - до 9
п.п.п. - до 20
Высокая удельная поверхность и аморфное состояние микрокремнезема обуславливает его высокую химическую активность и снижение температур реакций, протекающих при обжиге. Выгорание углерода, содержащегося в отходе, обеспечивает дополнительную поризацию черепка и снижение расхода топлива на обжиг.
Глиежи - природные горелые породы, образующиеся в результате самообжига угленосных пород в естественных условиях в течение длительного времени. Глиежи, обладая высоким содержанием дегидратированной глинистой составляющей, почти не имеют стекловидной фазы и углистых примесей.
Химический состав глиежей Кодинского месторождения, мас.%:
SiO2 - 63.6
Al2O3 - 18.4
Fe2O3 - 7.2
CaO - 2.3
MgO - 1.9
SO3 - 0.13
TiO2 - 0.84
Na2O - 1.43
K2O - 3.7,
п.п.п. - 0.5
Итого - 100
Растворимый Al2O3 - 3.7.
Частично разложившаяся и разупорядоченная структура глиежей, а также высокое содержание в них растворимых щелочей, окислов алюминия, железа обуславливают активное взаимодействие глиежей и микрокремнезема с образованием силикатного расплава и формированием прочного керамического черепка.
Пример.
Для приготовления сырьевой смеси используют микрокремнезем производства кристаллического кремния Братского алюминиевого завода и глиежи Кодинского месторождения.
Измельченные до размера частиц менее 1 мм глиежи смешивают с микрокремнеземом, после чего вводят воду в количестве, необходимом для получения шихты влажностью 10%. Содержание ингредиентов (в мас.%) в предлагаемых составах приведено в табл. 1 (составы N 1,2,3,4).
Из полученной шихты методом полусухого прессования при давлении прессования 25 МПа формуют образцы-цилиндры диаметром 40 мм, которые высушивают при 100...110oC до постоянной массы и обжигают при 1000oC.
Для обоженных изделий определяют среднюю плотность, водопоглощение, прочность при сжатии сухих и выдержанных в течение суток в воде изделий, после чего рассчитывают коэффициент размягчения и коэффициент конструктивного качества.
Конкретные значения оцениваемых параметров приведены в табл. 1.
Применение предлагаемой сырьевой смеси позволяет повысить прочность обоженных изделий в 2,4...3,9 раза. Кроме того, использование предлагаемой сырьевой смеси способствует расширению сырьевой базы керамических материалов за счет вовлечения в технологический процесс многотоннажного отхода производства кристаллического кремния.
Источники информации.
1. А.с. 1310366, МКИ C 04 B 33/00 - 1987. - N 18.
2. Пак Н.В., Артемова Л.М., Макаров В.Я., Школьников П.В. Производство золокерамического камня и блоков из золы Томь-Усинской ГРЭС. Энергетическое строительство. 1990, N 3, с. 38.
название | год | авторы | номер документа |
---|---|---|---|
СЫРЬЕВАЯ СМЕСЬ ДЛЯ ИЗГОТОВЛЕНИЯ СТЕНОВЫХ КЕРАМИЧЕСКИХ ИЗДЕЛИЙ | 1998 |
|
RU2149150C1 |
СЫРЬЕВАЯ СМЕСЬ И СПОСОБ ИЗГОТОВЛЕНИЯ СТЕНОВЫХ КЕРАМИЧЕСКИХ ИЗДЕЛИЙ | 1997 |
|
RU2130912C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ СТЕНОВЫХ КЕРАМИЧЕСКИХ ИЗДЕЛИЙ | 1998 |
|
RU2151122C1 |
СЫРЬЕВАЯ СМЕСЬ ДЛЯ ИЗГОТОВЛЕНИЯ СТЕНОВЫХ КЕРАМИЧЕСКИХ ИЗДЕЛИЙ | 1995 |
|
RU2086517C1 |
СЫРЬЕВАЯ СМЕСЬ ДЛЯ ИЗГОТОВЛЕНИЯ СТЕНОВЫХ КЕРАМИЧЕСКИХ ИЗДЕЛИЙ | 1999 |
|
RU2167125C2 |
СПОСОБ ИЗГОТОВЛЕНИЯ СТЕНОВЫХ КЕРАМИЧЕСКИХ ИЗДЕЛИЙ | 1999 |
|
RU2167126C2 |
СЫРЬЕВАЯ СМЕСЬ ДЛЯ ИЗГОТОВЛЕНИЯ СТЕНОВЫХ ИЗДЕЛИЙ | 1999 |
|
RU2172306C1 |
СЫРЬЕВАЯ СМЕСЬ ДЛЯ ИЗГОТОВЛЕНИЯ СТЕНОВЫХ МАТЕРИАЛОВ | 2002 |
|
RU2225852C1 |
Сырьевая смесь и способ получения гранулированного теплоизоляционного материала | 2002 |
|
RU2220928C1 |
СЫРЬЕВАЯ СМЕСЬ И СПОСОБ ПОЛУЧЕНИЯ ТЕПЛОИЗОЛЯЦИОННОГО МАТЕРИАЛА | 1996 |
|
RU2128633C1 |
Сырьевая смесь относится к производству строительных материалов и может быть использована для изготовления стеновых керамических изделий. Сырьевая смесь содержит компоненты при следующем соотношении, мас.%:
Глиежи - 42-83
Микрокремнезем - 58-17
Технический результат изобретения - повышения прочности обожженных изделий. Использование предлагаемой сырьевой смеси позволяет в 2,4-3,9 раза повысить прочность обожженного материала, а также способствует расширению сырьевой базы и решению экологических проблем. 1 табл.
Сырьевая смесь для изготовления стеновых керамических изделий, включающая кремнеземистый и алюмосиликатный компоненты, отличающаяся тем, что она содержит в качестве кремнеземистого компонента микрокремнезем в виде пылевидных отходов производства кристаллического кремния, а в качестве алюмосиликатного компонента - глиежи при следующем соотношении компонентов, мас.%:
Глиежи - 42 - 83
Микрокремнезем - 58 - 17
Пак Н.В | |||
и др | |||
Производство золокерамического камня и блоков из золя Томь-Усинской ГРЭС | |||
Энергетическое строительство, 1990, N 3, с | |||
Способ сужения чугунных изделий | 1922 |
|
SU38A1 |
СЫРЬЕВАЯ СМЕСЬ ДЛЯ ИЗГОТОВЛЕНИЯ СТЕНОВЫХ КЕРАМИЧЕСКИХ ИЗДЕЛИЙ | 1995 |
|
RU2086517C1 |
КЕРАМИЧЕСКАЯ КОМПОЗИЦИЯ ДЛЯ ИЗГОТОВЛЕНИЯ СТЕНОВЫХ ИЗДЕЛИЙ | 1995 |
|
RU2087451C1 |
Керамическая масса для изготовления облицовочных плиток | 1980 |
|
SU1006413A1 |
Жаростойкая бетонная смесь | 1977 |
|
SU654576A1 |
Авторы
Даты
1999-05-27—Публикация
1997-11-21—Подача