СПОСОБ ЗАЩИТЫ ОТ КОРРОЗИИ Российский патент 1999 года по МПК C23F11/14 

Описание патента на изобретение RU2132409C1

Изобретение относится к энергетике, конкретнее - к способам антикоррозионной защиты элементов тепломеханического оборудования, работающего в контакте с агрессивными, минерализованными средами, например, в геотермальных установках.

Известен способ предупреждения коррозии стальной трубы для геотермальных скважин, в котором для защиты арматуры геотермальных скважин используется ингибитор O-m-n-ксиленбистиоцианат в смеси с поверхностно-активными добавками. Однако такая ингибирующая смесь предназначена для антикоррозионного действия в постоянно действующих установках, которые не допускают контакта с атмосферой, и не обеспечивает защиты от сероводородной коррозии.

Наиболее близким к предложенному техническому решению по технической сущности и достигаемому эффекту является способ защиты от коррозии изделий, работающих в минерализированных геотермальных средах, включающий создание защитной среды с октадециламином, обеспечение контакта защитной среды с изделием, выдержку изделия в защитной среде и удаление последней (см., например, патент США N 3931043 по кл. C 23 F 11/14).

К недостаткам описанного способа следует отнести отсутствие защитного эффекта при использовании способа в агрессивных минерализованных средах при повышенных температурах.

Задачей настоящего изобретения является устранение указанного недостатка, повышение эффективности защиты от коррозии и расширение сферы использования в условиях повышенных температур и коррозионно активных сред.

Поставленная задача решается благодаря тому, что в известном способе защиты от коррозии изделий, работающих в минерализованных геотермальных средах, включающем создание защитной среды с октадециламином, обеспечение контакта защитной среды с защищаемым изделием, выдержку изделия в защитной среде и удаление последней, согласно изобретению защитная среда содержит 30-50 мг/л октадециламина и 50-100 мг/л пиперидина, при этом октадециламин вводят в создаваемую защитную среду через 15-20 мин после введения пиперидина, изделие выдерживают в защитной среде не менее 2х часов, а удаление защитной среды осуществляют со скоростью не более 0,2 м/мин.

Решение поставленной задачи действительно возможно, т.к. введение низкомолекулярного амина (пиперидина) повышает растворимость высокомолекулярного амина (октадециламина) в тройной системе: октадециламин-пиперидин-вода.

Хорошее смешивание с водой низкомолекулярного амина обеспечивает его проникновение в мельчайшие поры металлической поверхности, заполненные водой, улавливание оксидантов и образование нейтральных соединений с сероводородом, а октадециламин образует на поверхности металла защитную пленку, стойкую к атмосферной коррозии.

Изобретение можно проиллюстрировать следующими примерами.

Пример 1.

В качестве агрессивной среды использовали модельную геотермальную среду состава:
Na2SO4•10H2O 805 мг/л; KCl 30 мг/л; CaCl 25 мг/л; NaHCO3 85 мг/л; MgCl2•6H2O 5 мг/л; NaCl 9 г/л, насыщенную сероводородом. Эффективность защиты от коррозии оценивали на образцах стали 20 размером 15х20х3 мм.

В рабочую среду при температуре 85oC вводили сначала пиперидин в количестве 50 мг/л и после 15-20 минут, достаточных для однородного распределения амина во всем рабочем объеме, добавляли октадециламин в количестве 50 мг/л. Продолжительность контакта защищаемой поверхности с защитной средой два часа. После этого раствор спускали со скоростью 0,2 м/мин. Защитный эффект определяли с помощью измерения стационарного потенциала стальной поверхности пластинки на pH-метр-милливольтметре pH-673M.

Пример 2.

В качестве агрессивной среды использовали модельный геотермальный раствор состава:
NaHCO3 - 588 мг/л; M3Cl2•6H2O - 84,2 мг/л; FeSO4 - 4,26 мг/л; Na2SO4•10H2O - 34,5 мг/л; (NH4)2SO4 - 33 мг/л; CaCl2 - 7215 мг/л; NaCl - 2586 мг/л; HuSiO4 - 220 мг/л, насыщенный сероводородом.

Исследования проводили по методике, аналогичной примеру 1.

Получены следующие результаты при соотношении компонентов защитной среды (октадециламин, пиперидин), мг/л 40:70 - защитный эффект (%) после спуска ингибирующего раствора 100%: защитный эффект через 21 сутки 97%.

Приведенные примеры показывают, что защитный эффект сохраняется продолжительное время, что особенно важно при консервации или ремонте оборудования, а способ защиты может быть использован при повышенных температурах агрессивных минерализованных сред.

Похожие патенты RU2132409C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ИНГИБИТОРА КОРРОЗИИ "ЛИМАН-11" ДЛЯ ЗАЩИТЫ СТАЛЬНОГО ОБОРУДОВАНИЯ, В ЧАСТНОСТИ, СИСТЕМЫ НЕФТЕСБОРА 1999
  • Егоров В.В.
  • Иванов Е.С.
  • Фролов В.И.
RU2149918C1
ИНГИБИТОР КОРРОЗИИ МЕТАЛЛОВ В ВОДНО-НЕФТЯНЫХ СЕРОВОДОРОДСОДЕРЖАЩИХ СРЕДАХ 2002
  • Селезнев А.Г.
  • Крянев Д.Ю.
  • Лазарев В.А.
  • Макаршин С.В.
RU2207402C1
ИНГИБИТОР КОРРОЗИИ В МИНЕРАЛИЗОВАННЫХ СЕРОВОДОРОДСОДЕРЖАЩИХ СРЕДАХ 2004
RU2248411C1
ИНГИБИТОР КОРРОЗИИ-БАКТЕРИЦИД В СЕРОВОДОРОДСОДЕРЖАЩИХ СРЕДАХ 1998
  • Тишанкина Р.Ф.
  • Шермергорн И.М.
  • Пантелеева А.Р.
  • Кудрявцева Л.А.
  • Бадриева Г.Г.
  • Неизвестная Р.Г.
  • Миргородская А.Б.
RU2128729C1
СПОСОБ ПОЛУЧЕНИЯ ИНГИБИТОРА КОРРОЗИИ В МИНЕРАЛИЗОВАННЫХ ВОДНЫХ СРЕДАХ 1997
  • Шермергорн И.М.
  • Кудрявцева Л.А.
  • Пантелеева А.Р.
  • Тишанкина Р.Ф.
  • Бадриева Г.Г.
  • Тимофеева И.В.
  • Фетисов А.А.
  • Березин Н.А.
  • Ефремов А.И.
  • Тарасов С.Г.
  • Сагдиев Н.Р.
RU2113543C1
СОСТАВ ИНГИБИТОРА КОРРОЗИИ 1998
  • Болдырев А.В.
  • Аванесова Х.М.
  • Ушаков А.П.
  • Борисенко В.С.
  • Чирков Ю.А.
RU2147627C1
СПОСОБ ПОЛУЧЕНИЯ ИНГИБИТОРА КОРРОЗИИ 2000
  • Пантелеева А.Р.
  • Сагдиев Н.Р.
  • Тишанкина Р.Ф.
  • Кузнецов А.В.
  • Тишанкина И.В.
  • Фетисов А.А.
  • Тарасов С.Г.
RU2164553C1
СПОСОБ ПОЛУЧЕНИЯ ИНГИБИТОРА СЕРОВОДОРОДНОЙ КОРРОЗИИ И НАВОДОРАЖИВАНИЯ МЕТАЛЛОВ 2003
  • Лисицкий В.В.
  • Гатауллин Р.Ф.
  • Расулев З.Г.
  • Вахитов Х.С.
  • Дмитриев Ю.К.
RU2239671C1
СПОСОБ ПОЛУЧЕНИЯ ИНГИБИТОРА КОРРОЗИИ В МИНЕРАЛИЗОВАННЫХ ВОДНЫХ СРЕДАХ 2010
  • Пантелеева Альбина Романовна
  • Кузнецов Александр Викторович
  • Тишанкина Раиса Фазыловна
  • Дмитриева Елена Клементьевна
  • Кострова Мария Ивановна
  • Сагдиев Нияз Равильевич
  • Половняк Сергей Валентинович
RU2436869C1
ОКСИЭТИЛИРОВАННЫЕ АЛКИЛ-(ИЛИ ФЕНОЛ) МЕТИЛ ИЛИ ЭТИЛФОСФИТЫ N-МЕТИЛ ИЛИ ЭТИЛАЛКИЛАММОНИЯ В КАЧЕСТВЕ ИНГИБИТОРОВ КОРРОЗИИ, ОБЛАДАЮЩИЕ БАКТЕРИЦИДНОЙ АКТИВНОСТЬЮ В ОТНОШЕНИИ СУЛЬФАТВОССТАНАВЛИВАЮЩИХ БАКТЕРИЙ 2006
  • Пантелеева Альбина Романовна
  • Тишанкина Раиса Фазыловна
  • Сагдиев Нияз Равильевич
  • Нестеренко Валерий Дмитриевич
  • Половняк Сергей Валентинович
  • Сафин Анатолий Нариманович
  • Тишанкина Ирина Валерьевна
  • Дмитриева Елена Климентьевна
  • Кострова Мария Ивановна
  • Айманов Рустем Данирович
RU2298555C1

Реферат патента 1999 года СПОСОБ ЗАЩИТЫ ОТ КОРРОЗИИ

Изобретение относится к приемам защиты элементов тепломеханического оборудования, работающего в контакте с агрессивными минерализованными средами, например, в геотермальных установках. Способ защиты от коррозии изделий заключается в создании защитной среды с октадециламином, обеспечение контакта защитной среды с изделием, выдержку изделия в защитной среде не менее 2 ч и удаление последней со скоростью не более 0,2 м/мин. При создании защитной среды сначала вводят 50-100 мг/л пиперидина и через 15-20 мин вводят 30-50 мг/л октадециламина. При применении предложенного способа повышается эффективность защиты от коррозии.

Формула изобретения RU 2 132 409 C1

Способ защиты от коррозии изделий, работающих в минерализованных геотермальных средах, включающий создание защитной среды с октадециламином, обеспечение контакта защитной среды с изделием, выдержку изделия в защитной среде и удаление последней, отличающийся тем, что при создании защитной среды сначала вводят 50-100 мг/л пиперидина и через 15-20 мин вводят 30 - 50 мг/л октадециламина, изделие выдерживают в защитной среде не менее 2 ч, а удаление защитной среды осуществляют со скоростью не более 0,2 м/мин.

Документы, цитированные в отчете о поиске Патент 1999 года RU2132409C1

US 3931043 A, 06.01.76
Плоскофанговая, полуавтоматическая машина 1960
  • Волков Б.А.
  • Караваев М.Ф.
  • Коган В.Я.
  • Мамиконян В.А.
  • Никифоров В.Н.
  • Перельман С.Л.
  • Шерешевский Г.Л.
SU134365A1
СПОСОБ ВОЗДЕЛЫВАНИЯ КАРТОФЕЛЯ ПРИ КАПЕЛЬНОМ ОРОШЕНИИ 2009
  • Салдаев Геннадий Александрович
RU2407274C1
Устройство для разделения потока деталей 1984
  • Уваров Геннадий Петрович
  • Фомин Владимир Михайлович
SU1177134A1
СПОСОБ МЕЖОПЕРАЦИОННОЙ ЗАЩИТЫ ОТ КОРРОЗИИ ПАРОВОДЯНЫХ ТРАКТОВ ТУРБОУСТАНОВКИ 1990
  • Поваров О.А.
  • Куршаков А.В.
  • Петрова Т.И.
  • Рыженков В.А.
  • Дубовский-Винокуров И.Я.
  • Величко Е.В.
SU1681736A1
Способ защиты малоуглеродистой стали от углекислотной коррозии 1989
  • Ивашов Валерий Иванович
  • Азизханов Тухтасин
SU1705409A1

RU 2 132 409 C1

Авторы

Поваров О.А.

Семенов В.Н.

Томаров Г.В.

Алексеев Ю.П.

Даты

1999-06-27Публикация

1996-11-18Подача