Настоящее изобретение касается устройств подачи лекарственных средств, предназначенных для подачи лекарственных средств в толстый кишечник и включающих в себя полимерную основу и лекарственное средство, содержащееся в основе или окруженное ею.
Большое количество лекарственных средств имеет высокую чувствительность к протеолитическим ферментам, содержащимся в пищеварительных соках желудка и тонком кишечнике. Лекарственные средства, такие как пептиды и протеины, разрушаются протеолитическими ферментами, по существу снижая тем самым поглощение.
Несмотря на то, что наиболее обычным и приемлемым для пациента является назначение для приема внутрь (пероральный прием), наиболее обычным способом подачи лекарственных средств, таких как пептиды и протеины, является парентеральное введение.
Исследования показали, что концентрация протеолитических ферментов в соках толстого кишечника значительно ниже концентрации в соках желудка и тонкого кишечника.
Следовательно, было очень полезно найти подходящий способ подачи лекарственных средств по выбору в толстый кишечник путем введения через пищеварительный тракт.
Полимерные материалы типа гидрогелей широко используют в системах переноса лекарственных средств для регулируемого выделения или используют в качестве стимулирующих датчиков. Такие устройства, например, описаны в работе Н.А. Пеппаса (редактор) Гидрогели в медицине и фармацевтическом деле), CRC Пресс, 1987 год. Описанные здесь технологии приготовления лекарственных средств обычно не подвержены биологическому разложению. Выделение фармакологически активных агентов, "загруженных" в такие гели, обычно констролируется с помощью простой диффузии в устройстве, которое зависит от содержания воды в геле. Поэтому эти гели не пригодны для подачи лекарственных средств в специфические области кишечника после перорального приема.
В заявке на патент ЕР N 357401 раскрыта биологически разлагаемая основа гидрогеля, включающая протеин, полисахарид и агент образования поперечных связей. Однако этот состав не пригоден для перорального приема.
В патенте США N 4024073 раскрыта гидрогельная смесь, включающая растворимый в воде полимер, содержащий хелатообразователь, связанный с полимерной цепью, и поливалентный ион металла, образующий поперечные связи полимерных молекул посредством хелатообразователя. Гидрогель полезен в качестве носителя для синхронизированного выделения лекарственных средств и препаратов и не предназначен для толстого кишечника.
В патентах Японии JP 1156912, JP 62010012, JP 5721315, Германии ДЕ 3400106 и США N 4496553 описано приготовление сжатых таблеток для медленного выделения лекарственных средств с использованием растворимых полимеров или полисахаридов. Все они являются обычными таблетками, расщепляющимися в зависимости от времени, и не предназначены специально для толстого кишечника.
В заявке на патент Великобритании GB 2066070 описана технология приготовления лекарственного средства в виде таблетки для выделения активного вещества в толстом кишечнике. Эта таблетка содержит активный компонент в центре, покрытый оболочкой, состоящей из целлюлозы и ее производных.
Оболочка способна разрушаться бактериями, присутствующими в толстом кишечнике. Однако недостаток этой системы заключается в том, что оболочка может растворяться в желудке или в верхнем желудочно-кишечном тракте. Поэтому в патенте описана система, которая чувствительна к времени прохождения через кишечник у различных людей и которая не выделяет активные вещества конкретно в толстом кишечнике.
Осмотические лекарственные устройства, предназначенные для подачи лекарственного средства в толстый кишечник, описаны в заявках на патент Великобритании N 2166051 и 2166052. Эти устройства содержат слоистую оболочку, окружающую пространство, содержащее лекарственное средство. Оболочка приводит к временной задержке начала значительного выделения лекарственного средства. Такие осмотические лекарственные устройства имеют те же недостатки, что и устройства, раскрытые в заявке на патент Великобритании N2066070.
Публикацией, относящейся к области настоящего изобретения, является работа: Химически модифицированные полисахариды для ферментно управляемой пероральной подачи лекарственных средств. (Кост и др., журнал "Биоматериалы", N 11, стр. 695-698, 1990 г.). В этой работе описывается система крахмала с ионно-образованными поперечными связями, используемого для управляемого выделения макромолекул в кишечнике. Система получает преимущество от наличия амилазов в тонком кишечнике и, следовательно, не предназначена для выделения в толстом кишечнике или ободочной кишке.
Недавно Рубинштейн и др. (журнал "Фармакологические исследования", N9, стр. 276-278, 1992 г.) описали подачу лекарственных средств в толстый кишечник с использованием хондроитиновой основы. Система состоит из лекарственного вещества, заделанного в сжатой основе хондроитина. Эта основа может расщепляться в любое время во время прохождения по тонкому кишечнику. Таким образом, эта система не пригодна для подачи лекарственного средства специального назначения в толстый кишечник.
В публикации WO 92/00732 описан состав для пероральной подачи оказывающих терапевтическое действие веществ в толстый кишечник. Состав содержит основное ядро, имеющее активное вещество или диспергированные в нем вещества, и внешний покрывающий слой без какого-либо активного вещества. Как основное ядро, так и внешний покрывающий слой основаны на полисахаридах типа пектина и (или) декстрана, образующих коацерват посредством образования поперечных связей поливалентным катионом, причем катион является двух- или трехвалентным.
В желудке пациента, имеющем нормальную функцию желудочной кислоты, ионы водорода проникают во внешний слой и ядро состава и посредством ионообменного замещения ионов водорода на многовалентные катионы оставляют полисахаридные цепи, не связанные в высокой степени и более или менее сохраняют состав объединенным посредством пространенных эффектов, а не катионными соединениями.
Это означает, что состав более или менее распадается во время прохождения через желудок и тонкий кишечник и этот распад во время этого прохождения сильно зависит от присутствия других катионов, времени пребывания состава и, в частности, от деятельности желудочной кислоты каждого пациента. Другими словами, состав вышеописанного типа может иметь возможность подавать активные вещества в толстый кишечник пациента, если состав приготовлен специально для этого пациента. Поэтому такой состав с коммерческой точки зрения не пригоден.
Использование гидрогелей, содержащих биологически разлагаемые связи, описано ранее Бронстедом и Копецеком в Трудах Международного симпозиума по управлению связанными биоактивными материалами, N 18, стр. 345-346, 1991 г. Гидрогели демонстрируют зависимое от водородного показателя разбухание, обусловленное внедренными кислотными группами в полимерной основной цепи, и биологическую разлагаемость из-за ферментно неустойчивых поперечных связей. Система использует присутствие микробных азоредуктазов в толстом кишечнике. Гидрогели разлагаются после разрушения поперечных связей и выделения полимерной основной цепи.
При использовании этих кислотных гидрогелей можно избежать некоторого существенного разложения и выделения лекарственного средства в желудке. Однако разрушение гидрогеля и, таким образом, выделение лекарственного средства в толстом кишечнике происходят очень медленно, и при прохождении толстого кишечника может выделиться только часть лекарственного средства.
Была получена подача лекарственных средств в толстый кишечник с использованием декстрановых пролекарств (Ларсен и др., журнал "Фармакологические исследование", N 6, стр. 995-999, 1989 г.), которые выделяют активное вещество после расщепления микробиологическими ферментами, присутствующими только в толстом кишечнике. Лекарственное средство было ковалентно связано с декстраном.
Когда пролекарство достигало толстого кишечника, бактериальные декстраназы оказывались способными разрушать декстран, выделяющий лекарственное средство после гидролиза ковалентной связи. Недостаток этой системы состоит в серьезной проблеме загрузки лекарственного средства. Кроме того, лекарственное средство должно обладать подходящей функциональной группой для модификации и быть способным выдержать экспериментальные условия для связи с декстрановым носителем.
Поэтому очевидно, что существует необходимость в устройстве пероральной подачи лекарственного средства с улучшенной селективностью в толстый кишечник.
Целью настоящего изобретения является обеспечить такое устройство пероральной подачи лекарственного средства, предназначенное для подачи лекарственного средства в толстый кишечник, при использовании которого можно подавать одно или больше лекарственные средства в толстый кишечник без существенной потери лекарственного средства в желудке, тонком кишечнике и с калом.
Соответствующее изобретению устройство подачи лекарственного средства включает в себя полимерную основу и лекарственное средство, содержащееся в основе или окруженное ею, и отличается тем, что полимерная основа является гидрогельной основой с ковалентными поперечными связями, включающей в себя разлагаемый декстраназой полимер и агент образования поперечных связей, обеспечивающий разветвленную связь между полимерными цепями.
Как упоминалось выше, декстраназы присутствуют только в толстом кишечнике. В соответствующем изобретению устройстве подачи лекарственного средства лекарственное средство защищено разлагаемым декстраназой полимером с поперечными связями, когда устройство проходит через желудок и тонкий кишечник. Когда оно достигает толстого кишечника, полимерная основа разрушается декстраназой и выделяется лекарственное средство.
Скорость разрушения полимерной основы и благодаря этому выделения лекарственного средства зависит от нескольких факторов, таких как выбор разлагаемого декстраназой полимера, агента образования поперечных связей, степени образования поперечных связей, содержания воды в гидрогельной основе и конфигурации и размера полученного в результате устройства. Соответствующее изобретению устройство можно конструировать так, чтобы практически все лекарственное средство выделялось в толстом кишечнике.
Разрушаемый декстраназой полимер в соответствующем изобретению устройстве должен быть по существу устойчивым к пищеварительным сокам желудка и толстого кишечника.
Разлагаемый декстраназой полимер предпочтительно представляет декстран или модифицированный декстран. Известно несколько способов модификации декстрана. Посмотрите, например, работу У.М. Макернана и С.Р. Рикетса "Биохимический журнал", N 76, стр. 117-120, 1960 года, касающуюся приготовления диэтиламиноэтилдекстрана. и работу К. Нейгасава и др. в журнале "Исследование углеводов", N 21, стр. 420-426, 1972 г., касающуюся синтеза сульфата декстрана.
Используя модифицированный декстран вместо обычного декстрана, можно получить гидрогельную основу с более гидрофобным или более гидрофильным, а также заряженным характером. Это можно использовать для управления свойствами разбухания гидрогельной основы. Разлагаемый декстраназой гидрогель также выбирают в зависимости от того, какое лекарственное средство необходимо загрузить в гидрогельную основу, чтобы разлагаемый декстраназой полимер не вступал в реакцию с лекарственным средством таким способом, который необратимым образом инактивирует лекарственное средство.
Особенно предпочтительным является сульфатированный, алкоксилатированный, окисленный или эфиризированный декстран.
Разлагаемый декстраназой полимер может иметь молекулярный вес между 10.000 и 2.000.000 г/моль, предпочтительно между 40.000 и 2.000.000 г/моль.
Если разлагаемый декстраназой полимер является декстраном, оптимальный молекулярный вес находится между 70.000 и 500.000.
Агентом образования поперечных связей может быть любой нетоксический агент, который способен обеспечить разветвленную связь полимерной структуры. Полимер может удерживаться вместе с помощью ковалентных связей, таких как уретан, сложный эфир, простой эфир, амид, карбонат или соединения карбоната. В качестве агента образования поперечных связей предпочтителен диизоцианат, который обеспечивает уретановые связи типа гексаметилендиизоцианата и 1,4-фенилендиизоцианата.
Степень образования поперечных связей в гидрогеле, подобно составу самого гидрогеля, влияет на кинетику разложения, наполнение и общий профиль выделения основы. То есть более высокая степень образования поперечных связей обычно приводит к более медленному разложению и выделению, в то время как более низкая степень образования поперечных связей приведет к более быстрому разложению и выделению.
Конечно, влияние, которое оказывает степень образования поперечных связей на выделение лекарственного средства, зависит от размера молекул лекарственного средства и способа заполнения лекарственным средством основы. Агент образования поперечных связей предпочтительно составляет 0,05-25 молекулярных процентов мономерических звеньев в гидрогеле.
В принципе лекарственное средство может быть лекарственным средством любого типа. Соответствующее изобретению устройство особенно выгодно использовать, когда лекарственные средства назначены для лечения заболеваний в толстом кишечнике, например, стероиды, 5-аминосалициловая кислота, противовоспалительные средства, противораковые средства, ферментное вещество и бактериальные культуры, или для назначения лекарственных средств, которые нестойки в желудке и (или) тонком кишечнике, например, пептиды типа инсулина, сосудорасширяющее средство или соматотропные гармоны, протеины, ферменты и вакцины.
Соответствующее изобретению устройство выгодно также для использования при приеме лекарственных средств с замедленным действием.
Путем использования соответствующего изобретению устройства лекарственные средства типа веществ для лечения ревматизма или других анальгезирующих веществ можно вводить пациенту в то время, когда он ложится спать, и они будут эффективны утром, если время проникновения устройства в толстый кишечник порядка 8 часов.
Лекарственное средство можно загружать в гидрогельную основу несколькими способами. Например, лекарственное средство или желатиновую капсулу, содержащую лекарственное средство, можно покрыть гидрогельной основой, или лекарственное средство может содержаться в полости гидрогельного устройства, то есть лекарственное средство окружено более толстым слоем гидрогельной основы.
Способы включения лекарственного средства в гидрогели общеизвестны специалистам в данной области техники и описаны, например, в работе С.У. Кима и др., "Фармакологические исследования", N 9, стр. 283-290, 1992 г.
В предпочтительном варианте осуществления соответствующего изобретению устройства лекарственное средство гомогенно распределено в гидрогельной основе с обеспеченными поперечными связями.
В зависимости от того, каким образом загружено лекарственное средство, гидрогельные основы можно оформлять в виде капсул, таблеток, пленок, микрошариков или чего-то подобного. Композиции, составленные с использованием гидрогельных основ, могут включать в себя обычные фармацевтические носители или наполнители, адъюванты и так далее.
Соответствующее изобретению устройство может содержать более, чем одно лекарственное средство, например, устройство может содержать одно лекарственное средство с высоким молекулярным весом в полости гидрогельной основы, а другое лекарственное средство с более низким молекулярным весом, гомогенно распределенное в основе.
Для специалистов очевидно, что возможны также другие комбинации, содержащие лекарственные средства, которые выделяются в желудке или тонком кишечнике.
Другой целью изобретения является обеспечить способ изготовления соответствующего изобретению устройства подачи лекарственного средства.
Соответствующий изобретению способ включает в себя:
а) растворение разлагаемого декстраназой полимера в растворителе,
b) добавление агента образования поперечных связей, способного осуществлять поперечную связь полимера с ковалентными связями с раствором,
с) обеспечение возможности вступления в реакцию агента образования поперечных связей с разлагаемым декстраназой полимером для обеспечения гидрогельной основы с поперечными связями.
Лекарственное средство можно загружать в устройство до окончания реакции образования поперечных связей путем использования нескольких способов. Эти способы также хорошо известны специалистам в данной области техники и в качестве примера описаны в работе С.3. Сонга и др. в журнале "Фармакология", N 70, стр. 216-219, 1981 г.
В предпочтительном варианте осуществления лекарственное средство загружают в устройство после окончания реакции образования поперечных связей с помощью следующих этапов:
а) гидрогельную основу подсушивают, предпочтительно до содержания воды ниже 30% по весу и, в частности, ниже 10% по весу,
b) высушенную гидрогельную основу приводят в соприкосновение с жидким лекарственным средством или раствором лекарственного средства и дают возможность ей набухать,
с) если необходимо, гидрогель сушат.
Этот последний способ обеспечивает простой и легкий способ изготовления соответствующего изобретению устройства, с помощью которого лекарственное средство диспергируется гомогенно.
Для дальнейшего описания изобретения приводится ряд примеров.
Фиг. 1 представляет график, иллюстрирующий степень равновесия разбухания соответствующего изобретению устройства в зависимости от содержания диметилсульфоксида.
Фиг. 2 представляет график, иллюстрирующий степень равновесия разбухания соответствующего изобретению устройства в зависимости от содержания агентов образования поперечных связей.
Фиг. 3 представляет график, иллюстрирующий степень равновесия разбухания соответствующего изобретению устройства в зависимости от молекулярного веса декстрана.
Фиг. 4 представляет график, иллюстрирующий расщепление в слепой кишке и желудке, соответственно, соответствующего изобретению устройства в зависимости от времени.
Фиг. 5 иллюстрирует характеристики выделения гидрокортизона из соответствующего изобретению устройства.
Пример 1. Приготовление разлагаемых декстраном гидрогелей.
1,5 грамма (9,25 ммоля элементов глюкозы) декстрана 70 (молекулярные вес 70.000, имеющийся в продаже в аптеках) растворили в 8,5 мл (85% по объему) безводного диметилсульфоксида (DMSO). Непосредственно при растворении декстрана добавили 86 мкл (0,46 ммоля ~5% по молекулярному весу) прозрачного слегка вязкого раствора гексаметилендиизоцианата (НД1, сшивающий агент).
Это было сделано в тщательно высушенной стеклянной чаше, так как реакции образования поперечных связей препятствуют даже незначительные количества воды. Раствор с помощью иглы и шприца перенесли в форму химического взаимодействия для изготовления пленок. Форма состоит из двух алюминиевых блоков с тефлоновым покрытием и водяными рубашками, причем раствор был помещен между этими блоками.
С помощью управления расстоянием между блоками, используя прокладочное кольцо, можно управлять толщиной получаемой в результате гидрогельной пленки. Температуру установили равной 70oC. Реакция образования поперечных связей проходила при этой температуре в течение 24 часов.
Подобным образом были синтезированы четыре других гидрогеля, содержащих декстран 70 и различные количества НД1 и DMSO. Два геля имели 2,5% и 10% по молекулярному весу НД1, а два имели 80% и 90% по объему DMSO.
Кроме того, изменяли молекулярный вес декстрана. Делали гидрогели с декстраном 10, 500 и 2000 (молекулярный вес 10.000, 500.0000 и 2.000.000, соответственно).
В таблице 1 показана диаграмма синтезированных гидрогелей (см. в конце описания)
%-ное содержание по объему рассчитывали относительно объема полученной реагирующей смеси, %-ное содержание по молекулярному весу рассчитывали на основании молярного содержания глюкозы в используемом количестве декстрана.
Пример 2. Определение степени равновесия разбухания биологически разлагаемых декстраном гидрогелей.
Исследовали степень равновесия разбухания гидрогелей, приготовленных в соответствии с примером 1, образцов A-G. Из каждого гидрогеля вырезали три круга и измерили вес разбухшего в воде геля и DMSO. Гели промыли в воде и высушили при комнатной температуре в течение 2 дней и в вакууме при температуре 40-50oC в течение 2 дней. Степень равновесия разбухания была вычислена как отношение массы разбухшего геля к массе сухого геля.
Фиг. 1 иллюстрирует зависимость степени равновесия разбухания гидрогелей, содержащих разные количества DMSO в реагирующей смеси. Увеличивающееся количество DMSO в реагирующей смеси приводит к увеличению степени равновесия разбухания получаемого в результате гидрогеля. Это более резко выражено в DMSO, чем в воде.
На фиг. 2 показано, что степень равновесия набухания снижается при увеличении плотности образования поперечных связей гидрогеля.
Из фиг. 3 можно увидеть, что если молекулярные вес декстрана изменяется, это не оказывает сколько-нибудь значительного влияния на степень равновесия набухания.
Степень равновесия набухания выше в DMSO, чем в воде. Таким образом, DMSO представляет хороший пример возможной среды, предназначенной для загрузки лекарственного средства в гидрогели.
Пример 3. Оценка способности к разложению гидрогелей вне организма.
Исследовали способность к разложению гидрогелей вне организма с использованием декстраназы (50 тысяч единиц декстраназы на грамм). Диски гидрогельных пленок диаметром 5 мм и толщиной 1,6 мм, подготовленных, как описано в примере 1, вырезали и подвергли набуханию до равновесия в 0,1-мольном буферном растворе ацетата с водородным показателем 5,4. После достижения равновесия набухания диски поместили в ферментную смесь, состоящую из 1 мл 0,1-мольного буферного раствора ацетата с водородным показателем 5,4 и 0,5, 3 и 12 мкл декстраназы. Смесь выдерживали в водяной бане при температуре 37oC, и было зарегистрировано время τ, требуемое для полного растворения дисков. Разрушение гелей отслеживалось по уменьшению толщины.
В таблице 2 (см. в конце описания) показано время (τ для разных гелей, когда ферментная смесь состояла из 12 мкл декстраназы на мл буферного раствора. При увеличении плотности сшивки увеличивалось время τ и, таким образом, уменьшалась способность к разложению. Это также относится к степени равновесия набухания; чем выше степень набухания, тем выше способность к разложению гидрогеля. Однако результаты, кроме того, показали, что на способность к разложению гидрогелей оказывают также влияние структурные факторы.
В таблице 3 показано, что при увеличении количества декстраназы возрастает скорость разрушения (см. в конце описания).
Пример 4. Оценка способности к разложению гидрогелей в организме.
Был зарегистрирован сухой вес 6 образцов B дисков гидрогеля диаметром 5 мм, и диски предварительно подвергнуты набуханию в буферном изотоничном растворе фосфата калия с водородным показателем 7,4. Каждый диск был помещен в марлевый мешочек. Марлевые мешочки имплантировали в желудок и слепую кишку самцам крыс SD (200-300 г) и прикрепили к стенке кишечника для предотвращения выделения гелей.
Затем крысам дали воду и пищу по желанию. Через разные промежутки времени (1, 2 и 3 дня) крыс умерщвляли и извлекали гели. Гели промывали в DMSO и воде и затем сушили. Регистрировали сухой вес и определяли расщепление гелей в виде % разрушения (потеря сухого веса в процентах относительно первоначального сухого веса). Первоначальный сухой вес был между 42 и 45 мг.
На фиг. 4 показано, что имплантированный в слепую кишку гель разрушался через 3 дня, тогда как гель, имплантированный в желудок, не разрушался. Это показывает, что разрушение гелей происходит в организме и что оно происходит в слепой кишке, а не в желудке.
Пример 5. Загрузка и выделение гидрокортизона вне организма.
Диски гидрогеля, приготовленные, как описано в примере 1, диаметром 5 мм и толщиной 1,6 мм (образец В) были промыты в воде и высушены. После сушки диски погрузили в раствор лекарственного средства гидрокортизона в DMSO (72,5 мг/мл). Через 24 часа гели высушили в вакууме при температуре 50oC в течение 2 дней. Выделение гидрокортизона из дисков исследовали в 0.1-мольном буферном растворе ацетата с водородным показателем 5,4 при наличии декстраназы (24 мкл декстраназы на мл буферного раствора) и без нее.
Гель погрузили в 5 мл среду выделения и держали в водяной ванне при температуре 37oC. Через временные интервалы в восемь минут при наличии ферментов и тридцать минут без ферментов брали 2,5 мл образцы и заменяли свежей средой. Количество выделенного гидрокортизона определяли с помощью обратной фазы HPLC (высокоэффективная жидкостная хроматография) в колонне С-18 с отношением металона к воде, равным 60:40 в качестве подвижной фазы, при ультрафиолетовом определении на длине волны 242 нм и объемом инжекции, равным 20 мкл.
Через 30 мин из погруженного в ферментосодержащий буферный раствор геля выделилось 0.72 мг гидрокортизона по сравнению с 0,11 мг из геля, находящегося в чистом буферном растворе. Это показывает, что выделение сильно возрастает в присутствии декстраназ.
На фиг. 5 показаны характеристики выделения гидрокортизона из гидрогелей. Более быстрое выделение гидрокортизона получено, когда в среде выделения присутствует декстраназа.
Изобретение предназначено для использования в фармации для создания лекарственных препаратов, действующих в толстом кишечнике. Устройство для пероральной подачи лекарственного средства, действующего в толстом кишечнике, включает гидрогелевую основу. Лекарственное средство находится в этой основе или окружено ею. Основа получена взаимодействием декстрана или его производных с агентом образования поперечных связей. Агент обеспечивает образованную поперечными связями систему с ковалентной связью между цепями полимера. Например, агент может формировать уретановые связи. Устройство получают растворением указанного полимера и добавлением в раствор агента образования поперечных связей. После их взаимодействия или до этого вводят лекарственное средство. В частности, лекарственное средство может быть введено в виде раствора или жидкости в гель, полученный после взаимодействия полимера с агентом. Изобретение позволяет избежать потери лекарственного средства в желудке, тонком кишечнике и с калом, благодаря улучшенной селективности в толстом кишечнике. 2 с. и 7 з.п.ф-лы, 5 ил., 3 табл.
Автоматический огнетушитель | 0 |
|
SU92A1 |
КЛАПАН ПОСТОЯННОГО ПЕРЕПАДА ДАВЛЕНИЙ | 0 |
|
SU357401A1 |
US 4371518, 1983 | |||
US 4496553, 1985 | |||
Машковский М.Д | |||
Лекарственные средства.-М.: Медицина, 1986, ч | |||
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
ВРАЩАТЕЛЬНЫЙ АППАРАТ С ТУРБИННЫМ ДВИГАТЕЛЕМ ДЛЯ ГИДРАВЛИЧЕСКОГО БУРЕНИЯ СКВАЖИН | 1922 |
|
SU546A1 |
Авторы
Даты
1999-10-10—Публикация
1993-07-06—Подача