Изобретение относится к баллонам для хранения и транспортировки жидких и газообразных сред высокого давления и, в частности, к композитным баллонам высокого давления, используемым преимущественно в спасательных средствах, а именно в портативных кислородных дыхательных аппаратах, применяемых, например, подводниками, пожарными и др.
Известны два типа композитных баллонов высокого давления с металлическим внутренним лейнером. Первый тип характеризуется тем, что силовая оболочка его выполняется из композитного материала, а внутренний тонкостенный герметичный лейнер - из алюминия. Баллон такого типа выдерживает всего около 100 циклов нагрузки, т.е. имеет низкую эксплуатационную надежность.
Второй тип композитного баллона высокого давления характеризуется тем, что силовая оболочка его выполняется из композитного материала, а внутренний герметизирующий лейнер - из нержавеющей стали или сплава титана. Этот тип композитного баллона высокого давления характеризуется существенно большим количеством циклов нагрузки.
Известен композитный баллон высокого давления, содержащий внутреннюю силовую оболочку из композитного материала. В металлической оболочке, свободно лежащей на штуцере, выполнены разгрузочные отверстия, а силовая оболочка имеет внутренний герметизирующий слой из резины, причем резиновый затвор приклеен одним концом к горловине, а другим - к металлической оболочке.
Способ изготовления этого баллона состоит в том, что на внутреннюю металлическую оболочку с выполненными в ней отверстиями, свободно лежащую на штуцере, укладывают резиновый затвор в виде слоя сырой резины, наматывают силовой композитный материал и все вместе полимеризуют в термокамере. (См. патент РФ N 2094696, F 17 C 1/00. 27.10.97 г. Бюл. N 30).
Недостатком известного баллона является то, что используемый в нем слой резины в процессе эксплуатации выделяет различные газообразные составляющие, которые поступают во внутренний объем баллона и делают его практически непригодным для использования в системах жизнеобеспечения.
Наиболее близким по технической сущности к предлагаемому баллону является композитный баллон высокого давления, содержащий внешнюю силовую оболочку из композитного материала, внутренний тонкостенный герметизирующий лейнер из нержавеющей стали, включающий цилиндрическую обечайку и два днища, сваренных с обечайкой, кольца из нержавеющей стали, установленные с внутренней стороны лейнера в местах соединения цилиндрической обечайки с днищами, и штуцер с фланцем, соединенный с одним из днищ (см. патент РФ N 2077682, F 17 C 1/06, 20.04.97 г. Бюл. N 11).
Способ изготовления описанного баллона состоит в том, что предварительно из нержавеющей стали изготавливают цилиндрическую обечайку с толщиной стенок 0,3 - 1,0 мм и два днища с той же толщиной стенок, в одном из днищ выполняют центральное отверстие под штуцер, в которое вставляют кольцевой выступ фланца штуцера, приваривая к нему края отверстия, затем днища приваривают к концам обечайки по периметру и осуществляют намотку на металлическую внутреннюю оболочку нитей армирующего композитного материала, пропитанных смолой, с последующей полимеризацией композитного материала в термокамере (см. там же).
Недостатком известного баллона, принятого за прототип, является то, что он не выдерживает большого числа циклов нагрузки и разгрузки, т.е. заполнения баллона газом под давлением и стравливания (выдачи) газа потребителю. Испытания этих баллонов показали, что максимальное число рабочих циклов для них достигает 250 циклов. Это ограничивает срок эксплуатации таких баллонов.
Задача изобретения состояла в создании такой конструкции композитного баллона высокого давления и способа его изготовления, которые обеспечивают повышенное число циклов загрузки и разгрузки.
Указанная задача решается тем, что предложен композитный баллон высокого давления, содержащий внешнюю силовую оболочку из композитного материала, внутренний тонкостенный герметизирующий лейнер из нержавеющей стали, включающий цилиндрическую обечайку и два днища, приваренных к обечайке, кольца из нержавеющей стали, установленные с внутренней стороны лейнера в местах соединения цилиндрической обечайки с днищами, штуцер с фланцем, соединенный с одним из днищ, который согласно изобретению снабжен дополнительными кольцами из нержавеющей стали, установленными с наружной стороны лейнера в местах соединения цилиндрической обечайки с днищами, причем в каждом месте соединения имеются две пары колец, два из которых охватывают с внешней и внутренней сторон края цилиндрической обечайки, а два других охватывают края свариваемого с ней по торцу днища.
Другим отличием предлагаемого баллона является то, что фланец штуцера имеет кольцевой выступ, входящий в отверстие в центре днища, причем форма поверхности фланца, обращенной к днищу, повторяет форму поверхности днища и края отверстия днища приварены к кольцевому выступу фланца штуцера.
Еще одним отличием предлагаемого баллона является то, что диаметр отверстия в днище, в которое вставлен кольцевой выступ фланца штуцера, составляет 0,15-0,2 диаметра лейнера. Это обеспечивает снижение напряжения в месте соединения штуцера и внутренней оболочки (лейнера).
В числе отличий предлагаемого баллона следует отметить то, что на внешней стороне фланца штуцера, контактирующей с силовой оболочкой баллона, выполнен выступ, имеющий форму многогранника. Это повышает сцепление внешней силовой оболочки со штуцером и таким образом способствует повышению срока службы баллона.
Задача решается также тем, что предложен способ изготовления композитного баллона высокого давления, при котором предварительно из нержавеющей стали изготавливают цилиндрическую обечайку с толщиной стенок 0,3-1,0 мм и два днища с той же толщиной стенок, в одном из днищ выполняют центральное отверстие под штуцер, в которое вставляют кольцевой выступ фланца штуцера, приваривая к нему края отверстия, затем днища приваривают к концам обечайки по периметру и осуществляют намотку на металлическую внутреннюю оболочку армирующих нитей композитного материала, пропитанных смолой, с последующей полимеризацией композитного материала в термокамере, в котором согласно изобретению перед привариванием днищ к обечайке на края обечайки и днищ с внешней и внутренней их сторон напрессовывают кольца из нержавеющей стали толщиной, соизмеримой с толщиной стенки обечайки, оплавляют торцы краев обечайки и днищ вместе с напрессованными на них кольцами и соединяют днища с обечайкой путем сварки встык.
Выбор толщины стенки обечайки в диапазоне 0,3-1,0 мм обусловлен тем, что при толщине стенки меньше 0,3 мм лейнер теряет свою форму при намотке вследствие усилий намотки нитей армирующего композитного материала. При толщине стенок больше 1,0 мм возрастает вес баллона и снижается показатель его эффективности, определяемый по формуле
Э = (P • U) / W,
где P - максимальное давление внутри баллона, при котором происходит его разрушение (разрушающее давление);
U - внутренний объем баллона;
W - вес пустого баллона.
Сущность изобретения поясняется чертежами, на которых изображена конструкция предлагаемого баллона. На фиг. 1 изображен вид композитного баллона с продольным разрезом. На фиг. 2 изображены днище со штуцером и часть цилиндрической обечайки-лейнера в сборе перед сваркой. На фиг. 3 изображено сварное соединение цилиндрической обечайки и днища лейнера.
Согласно изобретению композитный газовый баллон высокого давления содержит внутренний лейнер из нержавеющей стали, например, марки 12Х18Р10Т и внешнюю силовую оболочку 2 из композитного материала, например органопласта (Армос-6), образованную намоткой на лейнер 1 по всей его поверхности прочного волокна из композитного материала, пропитанного смолой.
Лейнер 1 выполнен сварным. Он содержит цилиндрическую обечайку 3 и два днища 4 и 5, приваренных по периметру 6 к цилиндрической обечайке 3. На края цилиндрической обечайки 3 и на свариваемые с ней края днищ 4 и 5 напрессованы внутренние и наружные кольца 7 и 8 из нержавеющей стали, которые охватывают края свариваемых деталей лейнера 1 по их периметру. В одном из днищ 4 выполнено отверстие под штуцер 9. Штуцер 9 имеет фланец 10, у которого с внутренней стороны, обращенной к днищу 4, выполнен кольцевой выступ 11, вставляемый в отверстие днища 4 и привариваемый к его краям 12. С внешней стороны фланца 10 штуцера 9, обращенной к силовой оболочке 2, выполнен выступ 13, имеющий в плане форму многогранника, например восьмигранника. Диаметр отверстия в днище 4, в которое вставлен кольцевой выступ 11 фланца 10 штуцера 9, составляет 0,15-0,2 диаметра цилиндрической обечайки 3 лейнера 1.
Способ изготовления баллона включает следующие операции.
Цилиндрическую обечайку 3 лейнера 1 изготавливают либо методом холодной вытяжки, либо путем сварки краев заготовки из тонкого листа нержавеющей стали толщиной 0,3-1,0 мм, которую сворачивают в цилиндр. Сварку проводят по образующей цилиндрической заготовки встык с использованием аргоно-дугового или электронно-лучевого метода сварки.
Днища 4 и 5 изготавливают из того же материала либо штамповкой, либо гидропрессованием. При этом, поскольку их глубина незначительна (как правило, не более 60 мм), достаточно просто обеспечить их толщину, соизмеримую с толщиной стенки цилиндрической обечайки 3, в частности не менее 0,3 мм.
В одном из днищ 4 проделывают центральное отверстие под штуцер 9, в которое вставляют кольцевой выступ 11 фланца 10 штуцера 9, привариваемый к краям этого отверстия путем оплавления кольцевого выступа 11 по контуру отверстия. Затем на края цилиндрической обечайки 3 и на соединяемые с ней края днищ 4 и 5 напрессовывают внутренние и внешние кольца 7 и 8 из нержавеющей стали толщиной, соизмеримой с толщиной стенок этих деталей лейнера 1. Далее края цилиндрической обечайки 3 и соединяемые с ней края днищ 4 и 5 вместе с напрессованными кольцами 7 и 8 оплавляют по периметру методом аргоно-дуговой сварки (см. фиг. 2), стыкуют их друг с другом и сваривают по периметру методом сварки встык.
Внешняя силовая оболочка 2 может быть выполнена из любого известного композитного материала, обычно применяемого при изготовлении композитных газовых баллонов высокого давления (органопластик, например кевлар (Армос-6), углепластик или стеклопластик). Для намотки на лейнер волокон композитного материала, пропитанных смолой, например эпоксидной смолой, используют спиральную радиально-диагональную намотку, которую осуществляют на известном технологическом оборудовании, обычно применяемом для этих целей.
В таблице представлены результаты испытаний различных образцов композитных баллонов высокого давления, изготовленных согласно данному изобретению.
Как видно из представленной таблицы, изготовленные согласно изобретению баллоны с различными материалами силовой оболочки и различным внутренним объемом характеризуются высоким числом рабочих циклов (циклов загрузки-выгрузки) и высокой эффективностью, сравнимой с эффективностью лучших образцов композитных баллонов высокого давления.
название | год | авторы | номер документа |
---|---|---|---|
КОМПОЗИТНЫЙ БАЛЛОН ВЫСОКОГО ДАВЛЕНИЯ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ | 2001 |
|
RU2205330C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ БАЛЛОНА | 2013 |
|
RU2533603C1 |
ЛЕЙНЕР БАЛЛОНА ВЫСОКОГО ДАВЛЕНИЯ | 2007 |
|
RU2353851C1 |
МЕТАЛЛОКОМПОЗИТНЫЙ БАЛЛОН ВЫСОКОГО ДАВЛЕНИЯ | 2009 |
|
RU2432521C2 |
МЕТАЛЛО-КОМПОЗИТНЫЙ БАЛЛОН ДАВЛЕНИЯ | 2010 |
|
RU2439425C2 |
МЕТАЛЛОПЛАСТИКОВЫЙ БАЛЛОН ВЫСОКОГО ДАВЛЕНИЯ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ | 2005 |
|
RU2289062C1 |
БАЛЛОН ВЫСОКОГО ДАВЛЕНИЯ | 2013 |
|
RU2560125C2 |
КОМПОЗИТНЫЙ КОРПУС ГЛУБОКОВОДНОГО ТЕХНИЧЕСКОГО СРЕДСТВА | 2010 |
|
RU2453464C2 |
БАЛЛОН ВЫСОКОГО ДАВЛЕНИЯ | 2018 |
|
RU2708013C1 |
КОМПОЗИТНЫЙ ГАЗОВЫЙ БАЛЛОН ВЫСОКОГО ДАВЛЕНИЯ | 2000 |
|
RU2188356C2 |
Изобретение относится к баллонам для хранения и транспортировки газов и жидкостей под давлением и может найти применение в системах жизнеобеспечения, автомобильной промышленности и др. Задача изобретения состояла в увеличении количества рабочих циклов загрузки баллона. Задача решается тем, что предложен композитный баллон высокого давления, содержащий внутренний герметизирующий тонкостенный лейнер из нержавеющей стали, включающий цилиндрическую обечайку и два днища, приваренные к обечайке, в котором лейнер снабжен кольцами из нержавеющей стали, установленными с внутренней и наружной сторон в местах соединения днищ с обечайкой, причем в каждом месте соединения имеются две пары колец, два из которых охватывают с внешней и внутренней сторон края обечайки, а два других охватывают края свариваемого с ней по периметру днища. Предложен также способ изготовления баллона, при котором к цилиндрической тонкостенной (0,3-10 мм) обечайке приваривают по периметру днища и производят намотку волокон композитного материала, пропитанных смолой, с последующей термообработкой, характеризующийся тем, что перед привариванием днищ к обечайке на края обечайки и днищ с внешней и внутренней их сторон напрессовывают кольца из нержавеющей стали, оплавляют торцы краев обечайки и днищ вместе с напрессованными на них кольцами и соединяют днища с обечайкой путем сварки встык. 2 с. и 3 з.п. ф-лы, 1 табл., 3 ил.
КОМПОЗИТНЫЙ ГАЗОВЫЙ БАЛЛОН ВЫСОКОГО ДАВЛЕНИЯ | 1994 |
|
RU2077682C1 |
Газовый баллон высокого давления | 1991 |
|
SU1838714A3 |
Баллон | 1988 |
|
SU1610189A1 |
Сварной баллон для сжиженного газа | 1991 |
|
SU1798589A1 |
Баллон давления | 1983 |
|
SU1083024A1 |
КОМПОЗИЦИЯ ДЛЯ ПОЛУЧЕНИЯ ПЕНОПОЛИУРЕТАНА | 1992 |
|
RU2026312C1 |
Вибросушилка | 1986 |
|
SU1449805A1 |
Частотный датчик давления | 1977 |
|
SU666450A1 |
US 5758796 A, 02.06.98 | |||
US 5518141 A, 21.05.96. |
Авторы
Даты
1999-10-27—Публикация
1999-01-29—Подача