СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ Российский патент 2001 года по МПК C22C21/16 

Описание патента на изобретение RU2163941C1

Изобретение относится к области цветной металлургии, а именно к сплавам на основе алюминия системы алюминий - медь - магний.

Предлагаемый сплав предназначен для изготовления различных конструкций, в том числе изделий авиакосмической техники, работающих при высоких акустических нагрузках.

Известны широко используемые сплавы этой системы, например, отечественный сплав Д16 /1/ и американские сплавы серии 2000, например 2024 /2/. Однако эти сплавы, имея приемлемые статические и динамические механические свойства, обладают недостаточной долговечностью под действием высокочастотного нагружения в акустическом диапазоне. Эта характеристика для ряда изделий авиакосмической техники является определяющей.

За прототип принят сплав на основе алюминия следующего химического состава в мас.% /3/:
медь - 3,8 - 4,9
магний - 1,2 - 1,8
марганец - 0,3 - 0,9
железо - 0,0001 - 0,3
кремний - 0,0001 - 0,2
цинк - 0,0001 - 0,1
титан - 0,0001 - 0,1
никель - 0,0001 - 0,05
сера - 0,0001 - 0,0004
алюминий - остальное
Известный сплав обладает высоким значением предела прочности. Однако этот сплав имеет пониженное значение акустической усталости. Технической задачей данного изобретения является создание сплава, обладающего при высоком пределе прочности повышенной акустической усталостью.

Для достижения поставленной технической задачи предложен сплав, содержащий медь, магний, марганец, титан, никель, который дополнительно содержит водород, при следующих соотношениях компонентов, в мас.%:
медь - 3,8 - 4,5
магний - 1,2 - 1,6
марганец - 0,4 - 0,8
титан - 0,01 - 0,07
никель - 0,01 - 0,05
водород - 2,7·10-5 - 5,0·10-5
алюминий - остальное
Повышение акустической усталости достигается за счет того, что сплав наряду с другими компонентами содержит титан и никель и дополнительно содержит водород.

Присутствие титана способствует модифицированию расплава и измельчению зерна. Авторами установлено, что дополнительное содержание в сплаве водорода в указанных пределах вызывает образование дисперсных гидридов магния и титана. Последние также способствуют модифицированию расплава, а кроме того, влияя на распределение дислокаций, тормозят распространение усталостной трещины. Никель взаимодействует с примесью железа и вызывает коагуляцию алюминидов железа, которые выделяются из твердого раствора при длительной высокотемпературной гомогенизации слитков. Все эти структурные изменения замедляют процесс зарождения и распространения усталостной трещины при высокочастотном нагружении, повышая тем самым акустическую усталость.

Пример осуществления
В лабораторных условиях были отлиты слитки четырех сплавов диаметром 70 мм. Химические составы предложенных и известного сплава приведены в таблице 1.

Слитки подвергали длительной гомогенизации при температуре 480oC 70 ч, затем прессовали на полосы сечением 15 х 60 мм.

Полосы закаливали от 490oC в воде с последующим естественным старением в течение 4 суток. Из прессованных полос изготавливали продольные образцы для испытания статистических механических свойств и акустической усталости. Акустическую усталость оценивали по долговечности образцов, испытанных при амплитуде напряжения 8 кгс/мм и частоте нагружения 165 Гц.

Результаты испытаний приведены в таблице 2. Анализ полученных данных показал, что предлагаемый сплав, по сравнению с известным сплавом, обладает практически одинаковым пределом прочности. Однако по акустической усталости он имеет трехкратное превосходство.

Таким образом, применение предлагаемого, например в авиакосмической технике в зонах, подверженных акустическому воздействию, обеспечивает повышение конструктивной прочности, надежности и долговечности работы изделий.

Литература
1. Галацкая И.К. "Металлография металлургических дефектов в прессованных полуфабрикатах из алюминиевых сплавов", 1973.

2. Патент США N 5213639, 148/693.

3. Патент РФ N 2119544, C 22 C 21/16.

Похожие патенты RU2163941C1

название год авторы номер документа
ВЫСОКОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО 2000
  • Фридляндер И.Н.
  • Каблов Е.Н.
  • Сенаторова О.Г.
  • Легошина С.Ф.
  • Самонин В.Н.
  • Сухих А.Ю.
  • Кохорст Иоганнес
RU2184166C2
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ ЭТОГО СПЛАВА 2000
  • Фридляндер И.Н.
  • Каблов Е.Н.
  • Сандлер В.С.
  • Боровских С.Н.
RU2184167C2
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО 1999
  • Фридляндер И.Н.
  • Каблов Е.Н.
  • Колобнев Н.И.
  • Хохлатова Л.Б.
  • Самохвалов С.В.
  • Воробьев А.А.
  • Петраковский С.А.
RU2163940C1
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО 2004
  • Каблов Евгений Николаевич
  • Фридляндер Иосиф Наумович
  • Антипов Владислав Валерьевич
  • Федоренко Татьяна Петровна
  • Ланцова Любовь Петровна
RU2278179C1
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО 2001
  • Фридляндер И.Н.
  • Хохлатова Л.Б.
  • Колобнев Н.И.
  • Колесенкова О.К.
RU2215805C2
ВЫСОКОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО 2014
  • Сенаторова Ольга Григорьевна
  • Каблов Евгений Николаевич
  • Антипов Владислав Валерьевич
  • Сомов Андрей Валерьевич
  • Блинова Надежда Евгеньевна
RU2556849C1
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ ЭТОГО СПЛАВА 2000
  • Фридляндер И.Н.
  • Каблов Е.Н.
  • Сандлер В.С.
  • Латушкина Л.В.
  • Федоренко Т.П.
  • Садков В.В.
  • Панченко П.В.
RU2180928C1
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО 2000
  • Фридляндер И.Н.
  • Каблов Е.Н.
  • Колобнев Н.И.
  • Хохлатова Л.Б.
RU2171308C1
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО 2003
  • Фридляндер И.Н.
  • Каблов Е.Н.
  • Молостова И.И.
  • Елисеева С.П.
  • Блинова Н.Е.
RU2243278C1
СВАРИВАЕМЫЙ ТИТАНОВЫЙ СПЛАВ 1994
  • Хорев А.И.
  • Тетюхин В.В.
RU2082803C1

Иллюстрации к изобретению RU 2 163 941 C1

Реферат патента 2001 года СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ

Изобретение относится к цветной металлургии, а именно к сплавам системы алюминий - медь - магний. Технической задачей данного изобретения является создание сплава, обладающего наряду с высокими прочностными свойствами повышенной акустической усталостью. Предложен сплав, имеющий следующий химический состав, мас.%: медь 3,8 - 4,5, магний 1,2 - 1,6, марганец 0,4 - 0,8, титан 0,01 - 0,07, никель 0,01 - 0,05, водород 2,7 · 10-5 - 5,0 · 10-5, алюминий - остальное. 2 табл.

Формула изобретения RU 2 163 941 C1

Сплав на основе алюминия, содержащий медь, магний, марганец, титан и никель, отличающийся тем, что он дополнительно содержит водород при следующих соотношениях компонентов, мас.%:
Медь - 3,8 - 4,5
Магний - 1,2 - 1,6
Марганец - 0,4 - 0,8
Титан - 0,01 - 0,07
Никель - 0,01 - 0,05
Водород - 2,7 x 10-5 - 5,0 x 10-5
Алюминий - Остальное

Документы, цитированные в отчете о поиске Патент 2001 года RU2163941C1

СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ 1997
  • Тейтель И.Л.
  • Сухих А.Ю.
RU2119544C1
Сплав на основе алюминия 1991
  • Горбунов Юрий Александрович
  • Боргояков Михаил Павлович
  • Перебоева Августа Алексеевна
  • Соколов Анатолий Сергеевич
  • Штерензон Анатолий Моисеевич
  • Кириченко Любовь Георгиевна
  • Галиева Лидия Вячеславовна
  • Кобрусев Эдуард Трофимович
  • Игнатов Владимир Дмитриевич
  • Федоров Евгений Александрович
SU1791461A1
АЛЮМИНИЕВЫЙ ЛИТЕЙНЫЙ СПЛАВ И СПОСОБ ЕГО ТЕРМООБРАБОТКИ 1993
  • Чебышев Виталий Андреевич
RU2080407C1
Пылеугольная горелка 1972
  • Маршак Юрий Леонидович
  • Нечаев Виктор Михайлович
  • Якушина Валентина Алексеевна
SU731185A1
JP 01290740 A, 22.11.1989.

RU 2 163 941 C1

Авторы

Фридляндер И.Н.

Сандлер В.С.

Ланцова Л.П.

Федоренко Т.П.

Каблов Е.Н.

Даты

2001-03-10Публикация

1999-07-01Подача