РАДИОПОГЛОЩАЮЩИЙ МАТЕРИАЛ Российский патент 2001 года по МПК C04B35/00 C04B35/453 C04B35/47 

Описание патента на изобретение RU2167840C2

Изобретение относится к области радиотехники и может быть использовано при создании элементов, поглощающих радиоволны высокочастотного и сверхвысокочастотного (СВЧ) диапазонов.

Важным фактором при создании элементов радиопоглощения в радиотехнике СВЧ является наличие у материала больших значений действительной части диэлектрической проницаемости и тангенса угла диэлектрических потерь [1].

Наиболее близким по технической сущности является радиопоглощающий материал на основе титаната стронция SrTiO3 с добавками пятиокиси ниобия Nb2O5 или тантала Ta2O5 [2]. К недостаткам материала относится отсутствие указаний на его возможность использования в широком интервале температур, поскольку как диэлектрическая проницаемость, так и тангенс угла диэлектрических потерь существенно зависят от температуры и частоты. Эти величины могут расти или понижаться при повышении температуры или частоты, или иметь максимумы на их температурных или частотных зависимостях. В патенте [2] приведены данные о значениях диэлектрической проницаемости и тангенса угла диэлектрических потерь материалов только при комнатной температуре и только на двух частотах СВЧ-диапазона.

Цель изобретения состоит в создании материалов с большим значением диэлектрических потерь в СВЧ-диапазоне в более широком температурном и частотном интервалах.

Цель достигается тем, что в радиопоглощающем материале на основе титаната стронция SrTiO3 при замещении в твердом растворе стронция на висмут, а титана на хром, марганец или железо достигается большее значение как диэлектрической проницаемости, так и тангенса угла диэлектрических потерь в СВЧ-диапазоне при комнатной температуре и при повышенной температуре. Изобретение иллюстрируется данными таблиц 1-3.

Как видно из таблицы 1, при комнатной температуре при понижении частоты от 2,0 ГГц до 0,5 ГГц как значения действительной части диэлектрической проницаемости, так и тангенса угла диэлектрических потерь увеличиваются во всех материалах. При этом наибольшее значение диэлектрической проницаемости имеет место в случае материала состава 0,6SrTiO3-0,4BiFeO3, а диэлектрических потерь - в материале 0,4SrTiO3-0,6BiMnO3.

При температуре 100oC в материале 0,6SrTiO3-0,4BiCrO3 диэлектрическая проницаемость при понижении частоты в указанном диапазоне также увеличивается, а тангенс потерь имеет максимальное значение среди указанных в таблице материалов при данной температуре.

Величина тангенса потерь при температурах 100oC и 200oC существенно больше единицы на частотах 0,5 ГГц и 2,0 ГГц в материалах 0,4SrTiO3-0,6BiMnO3 и 0,3SrTiO3-0,7BiMnO3, а в материале 0,4SrTiO3-0,6BiMnO3 и при комнатной температуре на частоте 0,5 ГГц.

Методика получения радиопоглощающего материала заключается в том, что включает в себя смешивание карбоната стронция, оксида титана и дополнительного компонента BiMO3 (M = Cr, Mn, Fe), обжиг смеси на воздухе, формование и спекание при температуре от 800oC до 1300oC в течение нескольких часов в зависимости от химического состава материала.

Для измерения действительной части диэлектрической проницаемости и тангенса угла диэлектрических потерь в диапазоне СВЧ используют резонаторный измеритель параметров сегнетоэлектриков (РИПСЭ-М).

Величины диэлектрической проницаемости и тангенса потерь рассчитывают через измеренные параметры резонатора: изменение резонансной длины и добротности резонатора с образцом относительно его длины и добротности при коротком замыкании торцевого зазора. Методика измерений и расчета действительной части диэлектрической проницаемости и тангенса угла диэлектрических потерь описана в [3, 4].

Измерения проводят на образцах, изготовленных в виде цилиндров диаметром 2 мм и высотой 1 мм с нанесенными на торцевые поверхности методом вжигания серебросодержащей пасты электродами.

Рентгенофазовый анализ, проведенный на рентгеновском дифрактометре ДРОН-3, показал, что образцы однофазны и обладают структурой перовскита.

Таким образом, изобретение позволяет создать материалы с большим значением диэлектрических потерь в СВЧ-диапазоне в широком температурном и частотном интервалах.

Источники информации
1. Сб. "Сегнетомагнитные вещества"/ Под ред. доктора физ.-мат. наук, профессора Ю.Н.Веневцева и доктора физ.-мат. наук В.Н.Любимова // М.: Наука, 1990, с. 152-163.

2. Европейский патент N 0331578, МПК6 C 04 B 35/46, 1989 (прототип).

3. Швидченко Б.И., Щеткин Н.А.,Сибирцев С.Н. Импедансный измеритель температурно-реверсивных характеристик сегнетоэлектриков диапазона 0,5-3,0 ГГц // Метрология и точные измерения, 1976, вып. 12 (III), с. 20-23.

4. Щеткин Н. А. , Швидченко Б.И. Измерение сегнетоэлектриков на СВЧ // Измерительная техника, 1974, N 8, с. 56-57.

Похожие патенты RU2167840C2

название год авторы номер документа
РАДИОПОГЛОЩАЮЩИЙ МАТЕРИАЛ 2000
  • Гагулин В.В.
  • Шевчук Ю.А.
  • Корчагина С.К.
RU2189954C2
ТОНКОПЛЕНОЧНЫЙ МАТЕРИАЛ ДИЭЛЕКТРИКА ЗАТВОРА С ВЫСОКОЙ ДИЭЛЕКТРИЧЕСКОЙ ПРОНИЦАЕМОСТЬЮ И СПОСОБ ЕГО ПОЛУЧЕНИЯ (ВАРИАНТЫ) 2004
  • Политова Екатерина Дмитриевна
  • Голубко Наталья Владимировна
RU2305346C2
Композитный керамический материал 2023
  • Деева Юлия Андреевна
  • Гырдасова Ольга Ивановна
  • Чупахина Татьяна Ивановна
  • Упорова Анастасия Михайловна
  • Бажал Владислав Владимирович
RU2817887C1
СПОСОБ ПОЛУЧЕНИЯ ЭПИТАКСИАЛЬНЫХ ПЛЕНОК 2004
  • Томашпольский Юрий Яковлевич
RU2330350C2
СПОСОБ СКЛЕИВАНИЯ МАТЕРИАЛОВ 1999
  • Тихомиров В.С.
RU2148593C1
СПОСОБ ИДЕНТИФИКАЦИИ ПОДЛИННОСТИ СПИРТОСОДЕРЖАЩИХ ЖИДКОСТЕЙ 1999
  • Некрасов В.В.
  • Сурин Н.М.
  • Гасанов Д.Р.
RU2150699C1
МАЛОГАБАРИТНЫЙ ФАЗОВРАЩАТЕЛЬ СВЧ-ДИАПАЗОНА 2012
  • Гуляев Юрий Васильевич
  • Бугаев Александр Степанович
  • Митягин Александр Юрьевич
  • Чучева Галина Викторовна
  • Афанасьев Михаил Сергеевич
RU2510551C1
ЩЕЛЕВАЯ ЛИНИЯ 2004
  • Мироненко И.Г.
  • Карманенко С.Ф.
  • Иванов А.А.
  • Семенов А.А.
  • Павловская М.В.
RU2258279C1
ПЛЕНОЧНЫЙ ПЛАСТМАССОВЫЙ СЦИНТИЛЛЯТОР 1999
  • Сурин Н.М.
  • Некрасов В.В.
  • Кузнецов А.А.
  • Гасанов Д.Р.
  • Дейнеко А.О.
  • Еремеев А.П.
  • Пермяков А.А.
  • Рыжакова Н.В.
RU2150128C1
СПОСОБ ПОЛУЧЕНИЯ ПЕРОКСОДИКАРБОНАТА КАЛИЯ 1998
  • Наживин Е.А.
RU2181791C2

Иллюстрации к изобретению RU 2 167 840 C2

Реферат патента 2001 года РАДИОПОГЛОЩАЮЩИЙ МАТЕРИАЛ

Радиопоглощающий материал на основе титаната стронция и дополнительного компонента BiMO3, где M выбирается из группы элементов, включающей хром, марганец, железо. Использование: в радиоэлектронной технике при получении материала с высокими значениями действительной части диэлектрической проницаемости и высокими диэлектрическими потерями в сверхвысокочастотном (СВЧ) диапазоне - радиопоглощающего материала. Технический результат: создание материалов с большим значением диэлектрических потерь в СВЧ-диапазоне в широком температурном и частотном интервалах. 3 табл.

Формула изобретения RU 2 167 840 C2

Радиопоглощающий материал на основе титаната стронция, отличающийся тем, что состоит из смеси 0,30 - 0,45 или 0,55 - 0,75 мольных долей титаната стронция, а также 0,70 - 0,55 или 0,45 - 0,25 мольных долей соответственно соединений с общей формулой ВiMO3, где М выбирается из группы элементов, включающей хром, марганец, железо.

Документы, цитированные в отчете о поиске Патент 2001 года RU2167840C2

ПЕРЕДВИЖНАЯ СУШИЛКА 0
  • Вители
  • Иностранцы Джон Монк Монк Чарльз Сидней Пенрин Монк
SU331578A1
GB 1521137 A, 16.08.1978
Шихта для изготовления пьезокерамического материала 1976
  • Джения Людмила Васильевна
  • Файнридер Дина Эзровна
  • Сокалло Александр Иванович
  • Лысакова Зинаида Владимировна
  • Вусевкер Юрий Анатольевич
  • Крамаров Олег Павлович
  • Гольдман Эллеонора Иосифовна
SU597659A1
СПОСОБ ИЗГОТОВЛЕНИЯ СЕГНЕТОКЕРАМИЧЕСКОГО МАТЕРИАЛА 1972
  • Н. А. Андреева, В. В. Булкина, В. И. Жуковский, М. И. Нейман
  • Д. В. Семилетова
SU429472A1
DE 4009955 A1, 02.10.1991
US 4746639 A, 24.05.1988.

RU 2 167 840 C2

Авторы

Гагулин В.В.

Шевчук Ю.А.

Корчагина С.К.

Иванова В.В.

Иванова Т.Л.

Даты

2001-05-27Публикация

1999-05-28Подача