Изобретение относится к области исследования гидрофизических полей и может быть использовано при проведении экологических исследований, в экспериментальной гидродинамике, океанологии и других областях техники, где требуется вести контроль параметров турбулентной среды.
Для решения задачи обнаружения турбулентных пятен в морской среде необходимо иметь высокочувствительный преобразователь скорости в электрический сигнал. Одной из причин, препятствующих созданию устройств для обнаружения турбулентных пятен в морской среде, является чувствительность преобразователя скорости к паразитным сигналам, возникающим в результате вибраций и неравномерного движения преобразователя, установленного на подвижном носителе, например на буксируемой линии.
Наиболее близким к предлагаемому является устройство для обнаружения турбулентных пятен в морской среде [1], которое содержит первый преобразователь скорости в электрический сигнал, второй и третий преобразователи скорости в электрический сигнал, идентичные первому преобразователю скорости в электрический сигнал, расположенные на одной прямой линии с первым преобразователем скорости в электрический сигнал по обе стороны от первого преобразователя скорости в электрический сигнал, последовательно соединенные полосовой фильтр, квадратор, блок усреднения и пороговый блок, второй вход которого соединен с источником порогового сигнала, а также вычислительный блок. При этом входы упомянутого вычислительного блока с первого по третий соединены с выходами преобразователей скорости в электрический сигнал с первого по третий соответственно, его выход соединен со входом полосового фильтра, а выход порогового блока является выходом устройства.
Недостатком устройства [1] является его недостаточная чувствительность.
Задачей изобретения является создание высокочувствительного устройства для обнаружения в морской среде турбулентных пятен с низким уровнем энергии турбулентности в условиях вибрационных помех.
Для решения поставленной задачи устройство для обнаружения турбулентных пятен в морской среде содержит расположенные на одной прямой линии идентичные первый, второй, третий и четвертый преобразователи скорости в электрический сигнал, последовательно соединенные полосовой фильтр, квадратор, блок усреднения и пороговый блок, второй вход которого соединен с источником порогового сигнала, а выход является выходом устройства, а также блок вычисления функции
где U - сигнал на выходе упомянутого блока вычисления функции, B;
K - масштабный коэффициент;
U1, U2, U3 и U4 - напряжения на первом, втором, третьем и четвертом входах упомянутого блока вычисления функции соответственно, B;
R12, R13, R14 - расстояния между первым и вторым, первым и третьим, первым и четвертым преобразователями скорости в электрический сигнал соответственно, м;
при этом второй, третий и четвертый преобразователи скорости в электрический сигнал расположены по одну сторону от первого преобразователя скорости в электрический сигнал, расстояния между первым и вторым, первым и третьим, первым и четвертым преобразователями скорости в электрический сигнал удовлетворяют условиям R14 > R13 > R12, входы упомянутого блока вычисления функции с первого по четвертый соединены с выходами преобразователей скорости в электрический сигнал с первого по четвертый соответственно, а выход упомянутого блока вычисления функции соединен со входом полосового фильтра.
Наилучшим вариантом расположения преобразователей скорости в электрический сигнал является такое их расположение, при котором расстояния между первым и вторым, первым и третьим, первым и четвертым преобразователями скорости в электрический сигнал удовлетворяют условиям R14 = 1,5•R13, R13 = 2•R13.
Благодаря введению четвертого преобразователя скорости в электрический сигнал, предложенным геометрическим соотношениям и новому вычислительному блоку повышается чувствительность устройства.
Сущность предлагаемого изобретения поясняется чертежами, на которых изображены:
на фиг. 1 - функциональная схема устройства;
на фиг. 2 - схема, поясняющая взаимное расположение преобразователей скорости в электрический сигнал в пространстве;
на фиг. 3 - схема, поясняющая взаимное расположение первого и второго преобразователей скорости в электрический сигнал.
На фиг. 1 обозначены:
1 - первый преобразователь скорости в электрический сигнал;
2 - второй преобразователь скорости в электрический сигнал;
3 - третий преобразователь скорости в электрический сигнал;
4 - четвертый преобразователь скорости в электрический сигнал;
5 - блок вычисления функции (1);
6 - полосовой фильтр;
7 - квадратор;
8 - блок усреднения;
9 - пороговый блок;
10 - источник порогового сигнала.
На фиг. 2 обозначены:
1 - первый преобразователь скорости в электрический сигнал;
2 - второй преобразователь скорости в электрический сигнал;
3 - третий преобразователь скорости в электрический сигнал;
4 - четвертый преобразователь скорости в электрический сигнал,
На фиг. 3 обозначены:
1 - первый преобразователь скорости в электрический сигнал;
2 - второй преобразователь скорости в электрический сигнал;
11 - чувствительные элементы преобразователей 1, 2;
12 - дифференциальные усилители;
R12 - расстояние между первым и вторым преобразователями 1 и 2 скорости в электрический сигнал.
В соответствии с фиг. 1 устройство содержит идентичные первый, второй, третий и четвертый преобразователи 1, 2, 3 и 4 скорости в электрический сигнал, выходы которых соединены соответственно с первым, вторым, третьим и четвертым входами блока 5 вычисления функции (1).
К выходу блока 5 вычисления функции (1) подключены последовательно соединенные полосовой фильтр 6, квадратор 7, блок 8 усреднения и пороговый блок 9, второй вход которого соединен с источником 10 порогового сигнала, а выход является выходом устройства.
Преобразователи 1-4 скорости в электрический сигнал могут быть электромагнитного, термоанемометрического или иного другого известного типа.
Блок 5 вычисления функции (1) может быть выполнен, например, на операционных усилителях, реализующих функции весового суммирования, или включать в свой состав многоканальный аналого-цифровой преобразователь и микропроцессорный вычислитель.
Полосу пропускания полосового фильтра 6 выбирают в зависимости от пространственного масштаба анализируемых турбулентных неоднородностей и скорости движения подвижного носителя. Для решения поставленной задачи используют преимущественно диапазон пространственных неоднородностей λ = (0,01-1,0) м. При фиксированной скорости V движения подвижного носителя этому диапазону соответствует диапазон рабочих частот Δ f = fmin - fmax. В частности, для λ = (0,01-1,0) м и V=5 м/с Δ f = (5-500) Гц. Если скорость подвижного носителя может изменяться, то верхнюю и нижнюю частоты диапазона рабочих частот выбирают соответственно из условий fmax = Vmax/λmin и fmin = Vmin/λmax. Например, диапазону рабочих скоростей носителя V = (2,5-10) м/с и упомянутому выше диапазону λ = (0,01-1,0) м соответствует полоса рабочих частот фильтра 6 Δ f = (2,5-1000) Гц.
Наилучшим вариантом выполнения фильтра 6 является его выполнение с возможностью ручной или автоматической перестройки полосы пропускания в зависимости от скорости движения носителя.
Время усреднения блока 8 выбирают, по меньшей мере, в 5-10 раз большим минимального периода колебаний на выходе полосового фильтра 6. Если полосовой фильтр 6 выполнен с перестройкой диапазона рабочих частот, то и блок 8 усреднения целесообразно выполнить с переменным временем усреднения, изменяющимся обратно пропорционально скорости движения подвижного носителя.
Источник 10 может иметь фиксированное значение порогового сигнала или переменное значение, которое может изменяться вручную или автоматически в зависимости от фоновых значений турбулентности или характера решаемых задач.
Блоки 6-10 могут быть аналоговыми или цифровыми, что не влияет на сущность изобретения.
Схемы построения блоков 6-10 хорошо известны.
Прямая, на которой расположены преобразователи 1-4, может иметь в пространстве любое положение при условии сохранения работоспособности преобразователей 1-4. В частности, преобразователи 1-4 должны быть правильно ориентированы по отношению к направлению набегающего потока и не должны "затенять" друг друга (фиг. 2). Наилучшим вариантом является такая ориентация преобразователей 1-4, при котором прямая, на которой они расположены, перпендикулярна направлению набегающего потока.
Расположение преобразователей 1-4 на одной прямой, расстояния между преобразователями 1-4 определяются по нахождению центров чувствительных зон. Обычно это ось симметрии чувствительного элемента 11 (см., например, фиг. 3). Поскольку геометрические размеры чувствительного элемента 11 каждого из преобразователей 1-4 во много раз меньше расстояния между ними, необходимые геометрические соотношения легко определяются.
Минимальные расстояния между преобразователями 1-4 выбирают из условия отсутствия влияния друг на друга. Максимальные расстояния R12, R13 и R14 ограничиваются конструктивными возможностями и условиями соблюдения конструктивной жесткости взаимного расположения преобразователей 1-3. Обычно расстояния R12, R13 и R14 составляют R12 = (0,1-1,0) м, R13 = (1,2-3,0)•R12, R14 = (1,1-2,0)•R13.
В частности, расстояния R12, R13 и R14 могут удовлетворять условиям R13 = 2•R12, R14 = 1,5•R13.
В каждом преобразователе 1-4, например, электромагнитного типа, наряду с чувствительным элементом 11 имеется, как правило, подключенный к чувствительному элементу 11 усилитель, в частности дифференциальный усилитель (ДУ) 12.
Предлагаемое устройство работает следующим образом.
Носитель, например буксируемая линия корабля экологического мониторинга, осуществляет перемещение в исследуемой среде жестко связанных преобразователей 1-4 скорости в электрический сигнал. Выходной сигнал преобразователя 1 обрабатывается в блоке 5 совместно с сигналами преобразователей 2-4 по формуле (1). После обработки в блоке 5 сигнал, свободный от вибрационных помех, фильтруется, возводится в квадрат и усредняется блоками 6, 7, 8. Сигнал, пропорциональный энергии турбулентных пульсаций, поступает на первый вход порогового блока 9. Если энергия турбулентных пульсаций превышает заданный уровень, на выходе порогового блока 9 появляется сигнал, который свидетельствует о наличии турбулентного пятна в исследуемой морской среде.
Использование предлагаемого изобретения позволяет повысить чувствительность устройства. Расчеты показывают, что чувствительность устройства можно увеличить до 1,3 раза.
Представленное описание и чертежи позволяют, используя существующую элементную базу, изготовить предлагаемое устройство в производстве и использовать его в тех областях техники, где требуется определять параметры турбулентности, в том числе вести контроль состояния морской среды с подвижного носителя, что характеризует изобретение как промышленно применимое.
Источники информации
1. Свид. на ПМ РФ N 15137, МПК G 01 P 5/00, 2000 (прототип).
Изобретение предназначено для использования в исследованиях гидрофизических полей при проведении экологических исследований, в экспериментальной гидродинамике, океанологии и других областях техники, где требуется вести контроль параметров турбулентной среды. Устройство содержит расположенные на одной прямой линии идентичные первый, второй, третий и четвертый преобразователи скорости в электрический сигнал, последовательно соединенные полосовой фильтр, квадратор, блок усреднения и пороговый блок, второй вход которого соединен с источником порогового сигнала, а выход является выходом устройства, а также блок вычисления функции. Второй, третий и четвертый преобразователи скорости в электрический сигнал расположены по одну сторону от первого преобразователя скорости в электрический сигнал. Расстояния между первым и вторым, первым и третьим, первым и четвертым преобразователями скорости в электрический сигнал удовлетворяют условиям R14>R13>R12. Входы блока вычисления функции с первого по четвертый соединены с выходами преобразователей скорости в электрический сигнал с первого по четвертый соответственно, а выход упомянутого блока вычисления функции соединен со входом полосового фильтра. Обеспечивается повышение чувствительности устройства. 1 з.п. ф-лы, 3 ил.
где U - сигнал на выходе упомянутого блока вычисления функции, В;
К - масштабный коэффициент;
U1, U2, U3 и U4 - напряжения на первом, втором, третьем и четвертом входах упомянутого блока вычисления функции соответственно, В;
R12, R13, R14 - расстояния между первым и вторым, первым и третьим, первым и четвертым преобразователями скорости в электрический сигнал соответственно, м,
при этом второй, третий и четвертый преобразователи скорости в электрический сигнал расположены по одну сторону от первого преобразователя скорости в электрический сигнал, расстояния между первым и вторым, первым и третьим, первым и четвертым преобразователями скорости в электрический сигнал удовлетворяют условиям R14>R13>R12, входы упомянутого блока вычисления функции с первого по четвертый соединены с выходами преобразователей скорости в электрический сигнал с первого по четвертый соответственно, а выход упомянутого блока вычисления функции соединен со входом полосового фильтра.
Электромагнитный прибор для испытания упряжных вагонных крюков | 1929 |
|
SU15137A1 |
ИЗМЕРИТЕЛЬ СКОРОСТИ ТЕЧЕНИЯ | 1991 |
|
RU2050547C1 |
Счетчик числа оборотов к арифмометру | 1927 |
|
SU12255A1 |
ТЕЛЕЖКА ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТНОГО СРЕДСТВА | 2000 |
|
RU2207275C2 |
Авторы
Даты
2001-12-27—Публикация
2001-01-22—Подача