СПОСОБ ПОЛУЧЕНИЯ КАРНАЛЛИТА ИЗ ХЛОРМАГНИЕВЫХ РАСТВОРОВ Российский патент 2002 года по МПК C01F5/34 

Описание патента на изобретение RU2182559C2

Изобретение относится к цветной металлургии, в частности к способам получения хлормагниевого сырья для последующей переработки его электролизом на магний и хлор.

Одна из основных операций в производстве магния и хлора посредством электролиза хлорида магния - это получение исходного хлормагниевого сырья для последующей переработки.

Имеются многочисленные патенты, где в качестве исходного сырья для последующего производства магния и хлора используют непосредственно растворы хлорида магния (пат. США 3742199, 3953574, 4981674).

Недостатками данных способов являются значительные энергозатраты и сложное аппаратурно-технологическое оформление, что определяется высокой степенью гидролиза при переработке растворов и гидратов хлорида магния на безводный хлорид магния - сырье для питания электролизеров. В частности, степень гидролиза хлорида магния MgCl2•n•Н2О(n=2-4) при обезвоживании в 10 раз выше, чем при обезвоживании карналлита КСl•MgCl2•2H2О, что и предопределило развитие альтернативных способов переработки растворов или гидратов хлорида магния на карналлитовое сырье.

Известен способ получения карналлита КСl•MgCl2•6Н2О в процессе механического перемешивания хлорида калия (КСl) с бишофитом (MgCl2•6H2O) (Serowy F. ,Tittel M., Zur Frage der themischen Behandlung von Carnallit und Bischofit, Freiberger Forschungsheften, Berlin, A-128, (1959). К недостаткам способа относятся большие затраты энергии на проведение процесса твердофазного синтеза карналлита. Полный переход компонентов - хлорида калия и бишофита в карналлит происходит при обеспечении огромной поверхности контакта реагентов, а именно непрерывном их перемешивании в шаровой мельнице в течение длительного периода ~ 48 часов. В связи с чем способ не находит применения в промышленной практике.

Известен также способ получения карналлита из карналлитовой породы и раствора, содержащего хлорид магния, - классический способ получения карналлита, используемый на Российских предприятиях (ОАО "Уралкалий" и ОАО "Сильвинит").

Извлеченная подземным способом дробленная карналлитовая порода и горячий маточный раствор, содержащий 32-33% MgCl2, поступают на растворение, где интенсивно перемешиваются при нагревании. Хлориды магния и калия переходят в раствор, примеси в осадок. После отделения от примесей раствор охлаждают с выделением кристаллов карналлита КСl•MgCl2•6Н2О. Пульпу фильтруют с разделением карналлита и маточного раствора. Маточный раствор подогревают и возвращают на растворение карналлитовой породы (Эйдензон М.А. Металлургия магния и других легких металлов. M.: Металлургия, 1974, с.20-21). К недостаткам способа относятся значительные энергозатраты на нагрев оборотного раствора хлорида магния, сложное аппаратурно-технологическое оформление процесса.

Наиболее близким из известных аналогов к предлагаемому (прототипом) является способ получения обогащенного (синтетического) карналлита из растворов хлорида магния (Эйдензон М.А. Металлургия магния и других легких металлов. М. : Металлургия, 1974, с.21-22). Раствор хлорида магния очищают от примесей и упаривают до содержания в нем 31% MgCl2. Концентрированный раствор смешивается в реакторе с пульпой калийхлорсодержащего реагента - отработанного электролита и/или хлорида калия. При охлаждении смеси из раствора выпадают кристаллы карналлита КСl•MgCl2•6Н2О. После сгущения и центрифугирования получают обогащенный (синтетический) карналлит, отправляемый на обезвоживание. Маточный раствор возвращают на упарку. Недостатком способа является наличие большого количества оборотного раствора, на нагрев которого необходимы значительные затраты топлива, ~ в два раза превосходящие затраты на его концентрирование, а также наличие крупногабаритного, занимающего значительные производственные площади оборудования.

В основу настоящего изобретения положена задача создания менее энергоемкого способа получения карналлита КСl•MgCl2•6Н2О с одновременным упрощением аппаратурно-технологической схемы процесса.

Поставленная задача решается тем, что в способе получения карналлита из хлормагниевых растворов на стадию смешения калийхлорсодержащий реагент вводят в твердом виде.

Поставленная задача решается также тем, что смесь обезвоживают до содержания кристаллизационной воды 2-6 моль на 1 моль КСl•MgCl2. Целесообразно, чтобы в получаемом карналлите поддерживалось массовое соотношение Mg:К= 0,5-0,8.

При прочих равных условиях, вышеуказанные приемы получения карналлита из растворов хлорида магния обеспечивают достижение технического результата при осуществлении изобретения. Получаемый технический результат заключается в следующем:
- снижение энергозатрат на ~ 30%, т.к. не требуется затрат энергии на удаление воды, приходящей на синтез карналлита с пульпой хлорида калия и/или отработанного электролита, а также нагрев оборотного маточного раствора;
- упрощение аппаратурно-технологической схемы, которая сводится по существу к двум основным операциям - смешению компонентов и упарке раствора, в процессе которых и происходит синтез карналлита.

Пример. Взяли 1000 кг очищенного от вредных примесей, концентрированного раствора хлоридов, содержащего, маc. %: MgCl2-32,7; КСl-0,9; NaCI-1,0; Н2О-65,4. Добавили 345 кг измельченного твердого отработанного калиевого электролита магниевых электролизеров состава, маc.%: MgCl2-8,2; КСl-74,2; NaCl-16,7; примеси-0,9. Кроме того, добавили 11,7 кг порошкообразного технического хлорида калия, содержащего, маc.%: КСl-95,0; NaCl-5,0. Массовое соотношение Mg:К в исходной реакционной смеси составляет 0,65. Процесс смешения реагентов производили с одновременным нагревом смеси до 150oС и удалением из зоны перемешивания водяных паров. В процессе смешения и нагрева выделилось 482,7 кг водяного пара. В процессе смешения происходит образование карналлита. Образование карналлита из хлоридов калия и магния протекает через стадию конверсии. Можно предположить, что процесс конверсии состоит из растворения кристаллов хлорида калия в концентрированном растворе хлорида магния, взаимодействии ионов калия и магния с хлор-ионами с образованием карналлита и последующей кристаллизацией карналлита. Получили 865,0 кг карналлита, содержащего, маc.%: MgCl2-41,1; КСl-30,9; NaCl-7,9; H2O-19,8; прочие примеси-0,5. Содержание кристаллизационной воды ~ 2,6 молей на моль КСl•MgCl2. Массовое соотношение Mg:К в полученном карналлите составило 0,65. Экспериментальные исследования показывают, что затраты энергии на обезвоживание смеси (упаривание) составляют ~330 кВт•ч на 1 т. Для сравнения для аналогичных условий затраты на проведение процесса твердофазного синтеза карналлита составляют ~5500 кВт•ч/т (аналог), а затраты энергии на упаривание раствора и синтез карналлита по способу прототипу составляют 470 кВт•ч/т.

Похожие патенты RU2182559C2

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ СИНТЕТИЧЕСКОГО КАРНАЛЛИТА 2004
  • Щелконогов А.А.
  • Фрейдлина Р.Г.
  • Гулякин А.И.
  • Щелконогов М.А.
  • Сабуров Л.Н.
RU2262483C1
СПОСОБ ПРОИЗВОДСТВА МАГНИЯ ИЗ ОКСИДНО-ХЛОРИДНОГО СЫРЬЯ 1998
  • Шелконогов Анатолий Афанасьевич
  • Мальцев Николай Александрович
  • Тетерин Валерий Владимирович
  • Чуб Александр Васильевич
  • Мельников Леонид Васильевич
  • Сабуров Лев Николаевич
  • Щелконогов Максим Анатольевич
  • Киселев Василий Александрович
  • Комков Виктор Владимирович
RU2118406C1
СПОСОБ ПОЛУЧЕНИЯ КАРНАЛЛИТА 2005
  • Сафрыгин Юрий Степанович
  • Осипова Галина Владимировна
  • Букша Юрий Владимирович
  • Тимофеев Владимир Иванович
  • Щелконогов Анатолий Афанасьевич
  • Мальцев Николай Александрович
  • Киселев Василий Александрович
  • Гулякин Александр Илларионович
  • Сабуров Лев Николаевич
RU2294895C1
СПОСОБ ПОЛУЧЕНИЯ СИНТЕТИЧЕСКОГО КАРНАЛЛИТА 2011
  • Лебедев Владимир Александрович
  • Ширев Михаил Юрьевич
RU2473467C1
СПОСОБ ПОЛУЧЕНИЯ СИНТЕТИЧЕСКОГО КАРНАЛЛИТА 2012
  • Ширев Михаил Юрьевич
  • Лебедев Владимир Александрович
RU2532433C2
СПОСОБ КОМПЛЕКСНОЙ ПЕРЕРАБОТКИ СИЛИКАТОВ МАГНИЯ 2005
  • Щелконогов Анатолий Афанасьевич
  • Мальцев Николай Александрович
  • Гулякин Александр Илларионович
  • Щелконогов Максим Анатольевич
  • Киселев Василий Александрович
  • Сабуров Лев Николаевич
  • Фрейдлина Руфина Григорьевна
  • Малиновская Елена Александровна
  • Яковлева Галина Аркадьевна
RU2290457C2
СПОСОБ ПОДГОТОВКИ ХЛОРМАГНИЕВОГО СЫРЬЯ К ПРОЦЕССУ ЭЛЕКТРОЛИТИЧЕСКОГО ПОЛУЧЕНИЯ МАГНИЯ И ХЛОРА 2008
  • Колесников Валерий Афанасьевич
  • Шундиков Николай Александрович
  • Тетерин Валерий Владимирович
  • Михайлов Эдуард Федорович
  • Елин Сергей Михайлович
RU2376393C1
СПОСОБ ПОЛУЧЕНИЯ СИНТЕТИЧЕСКОГО КАРНАЛЛИТА 2005
  • Язев Владимир Дмитриевич
  • Фрейдлина Руфина Григорьевна
  • Сабуров Лев Николаевич
  • Гулякин Александр Илларионович
  • Овчинникова Надежда Борисовна
RU2299855C2
СПОСОБ ПОЛУЧЕНИЯ СИНТЕТИЧЕСКОГО КАРНАЛЛИТА ДЛЯ ПРОЦЕССА ЭЛЕКТРОЛИТИЧЕСКОГО ПОЛУЧЕНИЯ МАГНИЯ И ХЛОРА 2007
  • Шундиков Николай Александрович
  • Тетерин Валерий Владимирович
  • Артеев Андрей Иванович
  • Михайлов Эдуард Федорович
  • Колесников Валерий Афанасьевич
  • Елин Сергей Михайлович
RU2367602C1
СПОСОБ ПОЛУЧЕНИЯ МАГНИЯ ИЗ СИНТЕТИЧЕСКОГО КАРНАЛЛИТА 2001
  • Фрейдлина Р.Г.
  • Тетерин В.В.
  • Сабуров Л.Н.
  • Гулякин А.И.
  • Скородумов В.А.
RU2218452C2

Реферат патента 2002 года СПОСОБ ПОЛУЧЕНИЯ КАРНАЛЛИТА ИЗ ХЛОРМАГНИЕВЫХ РАСТВОРОВ

Изобретение предназначено для металлургической промышленности и может быть использовано при получении магния электролизом. 1000 кг очищенного концентрированного хлормагниевого раствора, содержащего, мас.%: MgCl2-32,7; KCl-0,9; NaCl-1,0; Н2О-65,4, смешивают с 345 кг измельченного твердого калиевого электролита магниевых электролизеров, содержащего, мас.%: MgCl2-8,2; KCl-74,2; NaCl-16,7; примеси -0,9. В смесь добавляют 11,7 кг порошкообразного технического хлорида калия, содержащего, мас.%: KCl-95,0; NaCl-5,0. Массовое отношение Mg:К в смеси 0,65. В процессе смешения проводят нагрев до 150oС. Смесь обезвоживают до содержания кристаллизационной воды 2-6 молей на 1 моль KCl•MgCl2. Массовое отношение Mg:К в карналлите 0,5-0,8. Изобретение позволяет упростить процесс, исключить из него большое количество оборотных растворов, снизить энергозатраты.

Формула изобретения RU 2 182 559 C2

Способ получения карналлита из хлормагниевых растворов, включающий их очистку и концентрирование, смешение с калийхлорсодержащим реагентом, отличающийся тем, что на стадию смешения калийхлорсодержащий реагент вводят в твердом виде, смесь обезвоживают до содержания кристаллизационной воды 2-6 молей на один моль КСl•MgCl2 при поддержании в карналлите массового соотношения Mg: К, равного 0,5-0,8.

Документы, цитированные в отчете о поиске Патент 2002 года RU2182559C2

ЭЙДЕНЗОН М.А
Металлургия магния и других легких металлов
- М.: Металлургия, 1974, с.21-22
Способ получения синтетического карналлита 1971
  • Овчаренко Владимир Георгиевич
  • Романенко Олег Николаевич
  • Мазуркевич Александр Борисович
  • Керницкий Роман Михайлович
SU448160A1
Способ получения карналлита 1979
  • Баранов Г.П.
  • Ковзель В.М.
  • Белышев М.А.
  • Хабер Н.В.
  • Назаревич З.В.
  • Овчаренко В.Г.
  • Терешин В.П.
SU788629A1
Способ получения обогащенного карналлита 1987
  • Пойлов Владимир Зотович
  • Дементий Лариса Владимировна
  • Дробязко Петр Александрович
  • Чистяков Алексей Алексеевич
  • Шумков Владимир Михайлович
  • Субботин Юрий Михайлович
  • Якимова Галина Ивановна
SU1567517A1
RU 94025107 А1, 27.06.1996
СПОСОБ ПОЛУЧЕНИЯ ИСКУССТВЕННОГО КАРНАЛЛИТА 1997
  • Подопригора В.П.
  • Сафрыгин Ю.С.
  • Букша Ю.В.
  • Черепанова Т.И.
  • Каратыгин Е.П.
  • Старостенков В.Л.
RU2132302C1
СПОСОБ ПЕРЕРАБОТКИ КАРНАЛЛИТА 1996
  • Трапезников Ю.Ф.
  • Кудрявский Ю.П.
  • Пенский А.В.
  • Агалаков В.В.
  • Михайлов Э.Ф.
RU2096323C1
US 3516783 А, 23.06.1970
US 3829559 А, 13.08.1984.

RU 2 182 559 C2

Авторы

Щелконогов А.А.

Детков П.Г.

Мальцев Н.А.

Тетерин В.В.

Ряпосов Ю.А.

Гулякин А.И.

Мельников Л.В.

Сабуров Л.Н.

Щелконогов М.А.

Киселев В.А.

Комков В.В.

Даты

2002-05-20Публикация

1999-07-28Подача