СПОСОБ ПОЛУЧЕНИЯ СИНТЕТИЧЕСКОГО КАРНАЛЛИТА Российский патент 2014 года по МПК C01F5/30 C01D3/04 

Описание патента на изобретение RU2532433C2

Изобретение относится к металлургии магния, в частности к способам получения хлормагниевого сырья для последующей его переработки электролизом с получением магния, хлора и отработанного электролита.

Получение исходного хлормагниевого сырья является одной из основных операций в производстве магния и хлора посредством электролиза хлорида магния. Существует несколько основных способов получения карналлита для электролиза магния.

Основной способ получения искусственного (обогащенного) карналлита для российских магниевых предприятий основан на перекристаллизации карналлитовой породы (М.А. Эйдензон, Магний. М.: Металлургия, 1969, с.145).

Дробленная карналлитовая порода и горячий маточный раствор, содержащий около 32 мас.% MgCl2, поступают на растворение, где интенсивно перемешиваются с нагревом до 110-120°C. Хлориды магния и калия переходят в раствор, примеси - в осадок. После отделения от примесей раствор охлаждают с выделением кристаллов карналлита. Пульпу фильтруют с разделением карналлита и маточного раствора. Маточный раствор подогревают и возвращают на растворение карналлитовой породы. К недостаткам способа относятся значительные энергозатраты на нагрев оборотного раствора хлорида магния, сложное аппаратурно-технологическое оформление процесса.

Известен способ получения синтетического карналлита из растворов хлорида магния (Эйдензон М.А. Металлургия магния и других легких металлов. М.: Металлургия, 1974, с.21-22). Раствор хлорида магния очищают от примесей и упаривают до содержания в нем 31 мас.% MgCl2. Концентрированный раствор смешивается в реакторе с пульпой отработанного электролита и/или хлорида калия. При охлаждении смеси из раствора выпадают кристаллы карналлита. После сгущения и центрифугирования получают синтетический карналлит, отправляемый на обезвоживание. Маточный раствор возвращают на выпарку. Недостатком способа является наличие большого количества оборотного раствора, на нагрев которого необходимы значительные затраты тепла, а также наличие крупногабаритного, занимающего значительные производственные площади оборудования.

Существует также способ получения карналлита из хлормагниевых растворов (Патент РФ №2182559), согласно которому хлормагниевый раствор очищают и концентрируют, смешивают с твердым калийхлорсодержащим реагентом (твердым измельченным калиевым электролитом магниевых электролизеров и хлористым калием), смесь обезвоживают до содержания кристаллизационной воды 2-6 молей на один моль KCl·MgCl2 при поддержании в карналлите массового соотношения Mg/K, равного 0,5-0,8. Способ отличает широкий интервал расхода хлорида калия, составляющий (78-124)% от стехиометрического соотношения KCl/MgCl2 в карналлите (KCl·MgCl2·6H2O).

Наиболее близким из известных аналогов к предлагаемому (прототипом) является способ производства магния из оксидно-хлоридного сырья (Патент РФ №2118406), в котором для получения синтетического карналлита применяют очищенные хлормагниевые растворы и/или гидраты хлорида магния, которые смешивают с твердым измельченным хлористым калием и/или твердым измельченным калиевым электролитом магниевых электролизеров до соотношения в смеси KCl/MgCl2=0,5-1,0, нагревают до температуры менее 150°C и при постоянном перемешивании охлаждают с получением продукта, содержащего не более 5 мас.% жидкой фазы. Хлормагниевые растворы после очистки от примесей смешивают и концентрируют до содержания хлорида магния (27-45) мас.%, а на стадии синтеза карналлита вводят частично обезвоженный карналлит, в качестве которого используют пыль печей обезвоживания карналлита и/или возгоны, образующиеся при переработке карналлита в расплавленном состоянии.

В этом способе велик интервал расхода хлорида калия, а нагрев реакционной смеси до высоких температур требует значительных затрат тепла. К тому же достоверно не доказано, что высокие температуры способствуют синтезу карналлита. Получение карналлита при смешении высококонцентрированного раствора хлорида магния (35-45) мас.% с твердым хлоркалиевым сырьем негативно сказывается на процессе синтеза карналлита, снижая степень конверсии хлористого калия в карналлит, ввиду плохого растворения KCl в таком растворе. В данном способе не указано, в какой момент процесса и в каком количестве в реактор подается частично обезвоженный карналлит.

Задачей настоящего изобретения является создание менее затратного способа получения синтетического карналлита с сокращением длительности процесса и повышением качества продукта.

Поставленная задача решается тем, что в заявленном способе, включающем очистку и концентрирование хлормагниевых растворов, их смешение с твердым измельченным калиевым электролитом магниевых электролизеров, нагрев с выделением газов и охлаждение смеси при постоянном перемешивании с получением синтетического карналлита, содержащего не более 5 мас.% жидкой фазы, с введением частично обезвоженного карналлита в виде пыли печей обезвоживания карналлита, предложено перед смешением твердый измельченный калиевый электролит магниевых электролизеров нагревать выделенными из зоны нагрева газами, а на стадии растворения реакционную смесь нагревать до температуры не более 120°C при массовом соотношении KCl/MgCl2 в реакционной смеси 0,78-0,83, причем начальная концентрация хлористого магния в растворе составляет 23-32 мас.%, а пыль печей обезвоживания карналлита вводить в смесь при содержании общей воды в системе 42-52 мас.%.

Твердый измельченный калиевый электролит магниевых электролизеров предварительно нагревают отходящими из аппарата синтеза газами (парами воды). Это обстоятельство позволяет утилизировать тепло отходящих паров воды с одновременным снижением энергозатрат на нагрев исходных материалов.

Смесь на стадии растворения нагревают до температуры менее 120°C при постоянном перемешивании, что позволяет снизить затраты тепла без ухудшения качества продукта.

Массовое соотношение в реакционной смеси хлорида калия к хлориду магния, равное 0,78-0,83, что составляет (100-106)% от стехиометрического соотношения компонентов в карналлите, обеспечивает высокое качество карналлита. Более высокое соотношение (свыше 0,83) ведет к повышенному содержанию свободной фазы хлористого калия в продукте, более низкое (менее 0,78) приводит к неполному связыванию хлористого магния в карналлит.

Начальная концентрация хлористого магния в растворе составляет 23-32 мас.%, что обеспечивает более полное растворение твердых частиц отработанного электролита и получение продукта высокого качества.

На завершающем этапе процесса, когда содержание общей воды в реакционной смеси составляет 42-52 мас.% в реактор добавляют частично обезвоженный карналлит в виде пыли печей обезвоживания карналлита в количестве, обеспечивающем снижение содержания общей воды в продукте до 35-40 мас.%. Данная операция позволяет повысить качество продукта за счет связывания обезвоженным карналлитом свободной воды с получением шестиводного кристаллогидрата, а также позволяет сократить длительность процесса (см. примеры 1 и 2), т.к. в этом случае до упарка реакционной смеси и сушка продукта исключаются, что способствует сокращению энергозатрат. Экспериментально доказано, что при добавлении обезвоженного карналлита в реакционную смесь на начальной стадии процесса или в середине процесса, когда содержание общей воды в смеси составляет свыше 52 мас.% наблюдается повышенный расход пыли печей обезвоживания карналлита и ее комкование, что ведет к снижению качества продукта. Введение обезвоженного карналлита в реакционную смесь, содержащую менее 42 мас.% общей воды, существенно не влияет на длительность процесса и приводит к неполному связыванию обезвоженного карналлита в шестиводный продукт.

При осуществлении изобретения достигается снижение энергозатрат на нагрев исходных материалов, выпарку реакционной смеси и сушку продукта, а также за счет сокращения времени процесса растворения и исключения длительных стадий до упарки свободной воды из реакционной смеси и сушки продукта. К тому же наблюдается улучшение качества продукта за счет необходимого соотношения KCl/MgCl2 в реакционной смеси и за счет повышения количества карналлитовой фазы, вызванное добавлением частично обезвоженного карналлита.

Пример 1. 100 кг хлормагниевого раствора, содержащего, мас.%: MgCl2 - 28,5; NaCl - 0,3; KCl - 0,1; CaCl2 - 0,1; Н2О - 71,0 смешали с 33,2 кг твердого измельченного калиевого электролита магниевых электролизеров следующего состава, мас.%: MgCl2 - 2,5; KCl - 70,8; NaCl - 19,5; H2O - 3,8; CaCl2 - 0,4; MgO - 0,2. Массовое отношение KCl/MgCl2 в исходной реакционной смеси составляло 0,8. При постоянном перемешивании и нагреве смеси до 113-117°C происходило растворение частиц электролита. Затем проводили синтез и упаривание смеси при температуре 110-113°C с получением сухого и рассыпчатого продукта в количестве 97,4 кг, содержащего, мас.%: MgCl2 - 30,1; KCl - 24,2; NaCl - 7,0; H2O - 37,4; CaCl2 - 0,2; MgO - 0,1. В процессе выделилось 35,8 кг водяного пара, который направили на нагрев свежих порций твердого измельченного калиевого электролита магниевых электролизеров. Длительность процесса составила 140 мин. Содержание карналлитовой фазы в продукте составило 75 мас.%.

Пример 2. 100 кг хлормагниевого раствора, содержащего, мас.%: MgCl2 - 28,5; NaCl - 0,3; KCl - 0,1; CaCl2 - 0,1; Н2О - 71,0 смешали с 33,2 кг твердого измельченного калиевого электролита магниевых электролизеров следующего состава, мас.%: MgCl2 - 2,5; KCl - 70,8; NaC - 19,5; H2O - 3,8; CaCl2 - 0,4; MgO - 0,2. Массовое отношение KCl/MgCl2 в исходной реакционной смеси составляло 0,8. При постоянном перемешивании и нагреве смеси до 113-117°C происходило растворение частиц электролита. Затем проводили синтез и упаривание смеси при температуре 110-113°C. По окончании синтеза, когда содержание общей воды в смеси составило 44 мас.% в реактор ввели пыль печей обезвоживания карналлита, следующего состава, мас.%: MgCl2 - 45,1; KCl - 33,6; NaCl - 12,5; H2O - 8,5; MgO - 0,3, в количестве 26,7 кг. Получили 133,6 кг сухого рассыпчатого продукта, содержащего, мас.%: MgCl2 - 31,0; KCl - 24,4; NaCl - 7,6; H2O - 37,1; CaCl2 - 0,2; MgO - 0,1. В процессе выделилось 26,3 кг водяного пара, который направили на нагрев свежих порций твердого измельченного калиевого электролита магниевых электролизеров. Длительность процесса составила 90 мин. Содержание карналлитовой фазы в продукте составило 85 мас.%.

Похожие патенты RU2532433C2

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ СИНТЕТИЧЕСКОГО КАРНАЛЛИТА 2011
  • Лебедев Владимир Александрович
  • Ширев Михаил Юрьевич
RU2473467C1
СПОСОБ ПОЛУЧЕНИЯ КАРНАЛЛИТА ИЗ ХЛОРМАГНИЕВЫХ РАСТВОРОВ 1999
  • Щелконогов А.А.
  • Детков П.Г.
  • Мальцев Н.А.
  • Тетерин В.В.
  • Ряпосов Ю.А.
  • Гулякин А.И.
  • Мельников Л.В.
  • Сабуров Л.Н.
  • Щелконогов М.А.
  • Киселев В.А.
  • Комков В.В.
RU2182559C2
СПОСОБ ПОДГОТОВКИ ОКСИДНОГО МАГНИЙСОДЕРЖАЩЕГО СЫРЬЯ К ЭЛЕКТРОЛИЗУ 2001
  • Щеголев В.И.
  • Шаяхметов Багдат Мухаметович
  • Татакин А.Н.
  • Краюхин А.Б.
  • Безукладников А.Б.
  • Матвеев В.И.
  • Сандлер Г.Ю.
  • Чикоданов Александр Иванович
RU2200705C1
СПОСОБ ПРОИЗВОДСТВА МАГНИЯ ИЗ ОКСИДНО-ХЛОРИДНОГО СЫРЬЯ 1998
  • Шелконогов Анатолий Афанасьевич
  • Мальцев Николай Александрович
  • Тетерин Валерий Владимирович
  • Чуб Александр Васильевич
  • Мельников Леонид Васильевич
  • Сабуров Лев Николаевич
  • Щелконогов Максим Анатольевич
  • Киселев Василий Александрович
  • Комков Виктор Владимирович
RU2118406C1
СПОСОБ ПОЛУЧЕНИЯ СИНТЕТИЧЕСКОГО КАРНАЛЛИТА 2005
  • Язев Владимир Дмитриевич
  • Фрейдлина Руфина Григорьевна
  • Сабуров Лев Николаевич
  • Гулякин Александр Илларионович
  • Овчинникова Надежда Борисовна
RU2299855C2
СПОСОБ ПОЛУЧЕНИЯ МАГНИЯ 1999
  • Резников И.Л.(Ru)
  • Щеголев В.И.(Ru)
  • Абрамова Л.Н.(Ru)
RU2158787C2
СПОСОБ ПЕРЕРАБОТКИ КАРНАЛЛИТОВОЙ ПЫЛИ ИЗ ЦИКЛОНОВ ПЕЧИ КИПЯЩЕГО СЛОЯ 2008
  • Михайлов Эдуард Федорович
  • Шундиков Николай Александрович
  • Бездоля Илья Николаевич
  • Тетерин Валерий Владимирович
  • Костарев Владимир Александрович
  • Быков Сергей Юрьевич
RU2370440C1
СПОСОБ ПОЛУЧЕНИЯ СИНТЕТИЧЕСКОГО КАРНАЛЛИТА ДЛЯ ПРОЦЕССА ЭЛЕКТРОЛИТИЧЕСКОГО ПОЛУЧЕНИЯ МАГНИЯ И ХЛОРА 2007
  • Шундиков Николай Александрович
  • Тетерин Валерий Владимирович
  • Артеев Андрей Иванович
  • Михайлов Эдуард Федорович
  • Колесников Валерий Афанасьевич
  • Елин Сергей Михайлович
RU2367602C1
СПОСОБ ПЕРЕРАБОТКИ КАРНАЛЛИТОВОЙ ПЫЛИ ИЗ ЦИКЛОНОВ ПЕЧИ КИПЯЩЕГО СЛОЯ 2009
  • Колесников Валерий Афанасьевич
  • Михайлов Эдуард Федорович
  • Тетерин Валерий Владимирович
  • Шундиков Николай Александрович
  • Потеха Сергей Иванович
  • Бездоля Илья Николаевич
RU2395456C1
СПОСОБ ПРОИЗВОДСТВА МАГНИЯ 1994
  • Пенский А.В.
  • Ельцов Б.И.
  • Тетерин В.В.
  • Бондарев Э.И.
  • Трапезников Ю.Ф.
  • Дятлов В.В.
RU2082826C1

Реферат патента 2014 года СПОСОБ ПОЛУЧЕНИЯ СИНТЕТИЧЕСКОГО КАРНАЛЛИТА

Изобретение относится к области цветной металлургии. Способ получения синтетического карналлита включает очистку и концентрирование хлормагниевых растворов, их смешение с твердым измельченным калиевым электролитом магниевых электролизеров, нагрев с выделением газов и охлаждение смеси при постоянном перемешивании с получением синтетического карналлита, содержащего не более 5 мас.% жидкой фазы, с введением частично обезвоженного карналлита в виде пыли печей обезвоживания карналлита в процессе синтеза. Перед смешением твердый измельченный калиевый электролит магниевых электролизеров нагревают выделенными из зоны нагрева газами. На стадии растворения реакционную смесь нагревают до температуры не более 120°C при массовом соотношении KCl/MgCl2 в реакционной смеси 0,78-0,83, причем начальная концентрация хлористого магния в растворе составляет 23-32 мас.%, а пыль печей обезвоживания карналлита вводят в смесь при содержании общей воды в системе 42-52 мас.%. Изобретение позволяет снизить расход теплоты, сократить время и повысить содержание карналлита в продукте.

Формула изобретения RU 2 532 433 C2

Способ получения синтетического карналлита, включающий очистку и концентрирование хлормагниевых растворов, их смешение с твердым измельченным калиевым электролитом магниевых электролизеров, нагрев с выделением газов и охлаждение смеси при постоянном перемешивании с получением синтетического карналлита, содержащего не более 5 мас.% жидкой фазы, с введением частично обезвоженного карналлита в виде пыли печей обезвоживания карналлита, отличающийся тем, что перед смешением твердый измельченный калиевый электролит магниевых электролизеров нагревают выделенными из зоны нагрева газами, а на стадии растворения реакционную смесь нагревают до температуры не более 120°C при массовом соотношении KCl/MgCl2 в реакционной смеси 0,78-0,83, причем начальная концентрация хлористого магния в растворе составляет 23-32 мас.%, а пыль печей обезвоживания карналлита вводят в смесь при содержании общей воды в системе 42-52 мас.%.

Документы, цитированные в отчете о поиске Патент 2014 года RU2532433C2

СПОСОБ ПРОИЗВОДСТВА МАГНИЯ ИЗ ОКСИДНО-ХЛОРИДНОГО СЫРЬЯ 1998
  • Шелконогов Анатолий Афанасьевич
  • Мальцев Николай Александрович
  • Тетерин Валерий Владимирович
  • Чуб Александр Васильевич
  • Мельников Леонид Васильевич
  • Сабуров Лев Николаевич
  • Щелконогов Максим Анатольевич
  • Киселев Василий Александрович
  • Комков Виктор Владимирович
RU2118406C1
СПОСОБ ПОЛУЧЕНИЯ КАРНАЛЛИТА 1990
  • Резников И.Л.
  • Васильев А.В.
  • Вязовов В.В.
  • Гергель В.В.
  • Свидло В.П.
  • Хаит И.М.
  • Краюхин А.Б.
  • Погинайко П.В.
SU1834247A1
СПОСОБ ПОЛУЧЕНИЯ КАРНАЛЛИТА ИЗ ХЛОРМАГНИЕВЫХ РАСТВОРОВ 1999
  • Щелконогов А.А.
  • Детков П.Г.
  • Мальцев Н.А.
  • Тетерин В.В.
  • Ряпосов Ю.А.
  • Гулякин А.И.
  • Мельников Л.В.
  • Сабуров Л.Н.
  • Щелконогов М.А.
  • Киселев В.А.
  • Комков В.В.
RU2182559C2
СПОСОБ ПЕРЕРАБОТКИ КАРНАЛЛИТОВОЙ ПЫЛИ ИЗ ЦИКЛОНОВ ПЕЧИ КИПЯЩЕГО СЛОЯ 2009
  • Колесников Валерий Афанасьевич
  • Михайлов Эдуард Федорович
  • Тетерин Валерий Владимирович
  • Шундиков Николай Александрович
  • Потеха Сергей Иванович
  • Бездоля Илья Николаевич
RU2395456C1
DE 10304315 A1, 12.08.2004;
CN 101269828 A, 24.09.2008

RU 2 532 433 C2

Авторы

Ширев Михаил Юрьевич

Лебедев Владимир Александрович

Даты

2014-11-10Публикация

2012-07-18Подача