СПОСОБ ДИАГНОСТИКИ ОНКОЛОГИЧЕСКИХ ЗАБОЛЕВАНИЙ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ Российский патент 2002 года по МПК A61B6/00 

Описание патента на изобретение RU2184486C2

Изобретение относится к области спектрофотометрических исследований и может быть использовано при изучении, функциональной диагностике предраковых и раковых состояний в онкологии (в частности, для исследования дисплазий; железисто-солидных и солидных раков; раков скирр; инфильтрующих раков; фиброаденом и т. д.) и других отраслях медицины, а также в приборостроении при изготовлении медицинской техники.

Известны способы и приборы для обнаружения злокачественных и доброкачественных образований в организме человека, такие как ЯМР-диагностика, рентгентовская компьютерная томография, термография, ультразвуковая диагностика, диагностика с применением радиоизотопов или при введении фотосенсибилизаторов.

[см. , например, Н.И. Рожнова. Рентгенодиагностика заболевания молочной железы, 1993; В.З. Шишкина. Радионуклиды в диагностике и лечении рака молочной железы, 1986; а. с. СССР 1320921, МКИ А 61 В 6/00, заявл.19.07.85, опубл. 15.04.94. Способ диагностики заболевания молочной железы путем термографии; Патент РФ 2013999, МКИ А 61 В 6/00, заявл. 16.01.91, опубл. 15.06.94. Способ определения функционального состояния пути лимфогенного метастазирования героты при раке молочной железы]
Результаты определений известными способами и приборами отягощаются значительными ошибками из-за наличия, например, воспалительных процессов в тканях, артефактов, неселективной накапливаемости диагностических препаратов и т.д.

Известны также спектральные люминесцентные способы и приборы для диагностики крови и других биотканей, основанные на спектроскопии собственной флуоресценции клеточных структур или введении в объект дополнительных экзогенных фотосенсибилизаторов.

[см. , например, патент США 4556057, МКИ А 61 В 6/08, НКИ 128/303.1, заявл. 11.03.83, опубл. 03.12.85. Прибор для диагностики рака, использующий импульсное лазерное излучение; а.с. СССР 1681204, МКИ G 01 N 33/52, заявл. 10.05.89, опубл. 30.09.91. Способ исследования гистологических препаратов; а. с. СССР 1466704, МКИ А 61 В 5/00, заявл.14.04.86, опубл. 23.03.89. Способ интраоперационной диагностики жизнеспособности тканей и т.д.]
Однако известные способы и приборы не обеспечивают устойчивой регистрации различий в спектрах нормальной и раковой тканей, не позволяют снизить время диагностирования заболевания, могут вызвать проявление побочных реакций со стороны организма человека.

Кроме того, широко известны оптические способы диагностики рака, включающие измерение коэффициентов диффузного отражения и пропускания нормальных тканей и раковых опухолей молочной железы.

[см., например, А.Н. Королевич и др. Особенности спектров диффузного отражения и пропускания нормальных и опухолевых тканей. Журнал прикладной спектроскопии, том 58, 5-6, май-июнь 1993 г., с. 555-559 и т.д.]
Указанные способы, как правило, реализуются на тканях, полученных после операции, кровенаполнение которых нарушено, и, следовательно, точность измерений низка. Кроме того, время определения занимает минимум 2-3 часа.

Наиболее близким по технической сущности и достигаемому результату к заявляемому изобретению является способ диагностики онкологических заболеваний (Метод определения раковой ткани с помощью видимого естественного свечения), включающий тестирование органа известными физическими методами (пальпация, маммография и др. ), исследование подозреваемой ткани путем возбуждения ее пучком монохроматического света с получением спектра флуоресценции и сравнение его с аналогичным спектром нормальной ткани (эталонного образца) с последующей компьютерной обработкой результатов исследования.

Прибор для реализации известного способа состоит из источника светового излучения (галогенная лампа или аргоновый лазер), оптического блока связи, системы подачи и сбора излучения, анализатора спектров и компьютера.

[см. патент США 4930516, МКИ А 61 В 5/00, НКИ 128/665, заявл. 25.04.88, опубл. 05.06.90]
Описанные способ и прибор для диагностики онкологических заболеваний не обеспечивают:
- точности определения из-за использования усредненных эталонных образцов, не учитывающих индивидуальных особенностей организма, причем условия их хранения усугубляют ошибки определения;
- достоверности в результате исследования только флуоресценции подозреваемой ткани;
- повышения экспрессности из-за необходимости длительной подготовки эталонных образцов;
- возможности определения онкологических заболеваний мягких тканей из-за проведения анализов "in vivo" с помощью зонда (эндоскопа) из оптического волокна для исследования полых органов человека (желудка, легких, мочевых путей, кишечного тракта, толстой кишки, горла и т. д.).

Кроме того, в известном способе и приборе для диагностики онкологических заболеваний отсутствует диагностический параметр, позволяющий классифицировать вид опухоли.

Следует отметить, что известный способ, хотя и характеризуется экспрессностью, не учитывает время получения информации об эталонных образцах (подготовка нормальных тканей "in vitro", снятие их спектров флуоресценции, формирование банка данных в компьютере).

Необходимо также отметить, что в известном изобретении исследования проведены на лабораторных животных и результаты экстраполированы на человека, что не является корректным вследствие несоответствия пиков флуоресценции тканей животных и человека.

Задачей настоящего изобретения является повышение диагностической эффективности экспрессности определения с обеспечением возможности диагностики в соответствии с морфологической классификацией опухолей.

Поставленная задача решается тем, что в известном способе диагностики онкологических заболеваний, включающем тестирование органа известными физическими методами, исследование подозреваемой ткани путем возбуждения ее пучком монохроматического света с получением спектра флуоресценции и сравнение его с аналогичным спектром нормальной ткани с последующей компьютерной обработкой результатов исследований, согласно изобретению перед исследованием подозреваемой ткани осуществляют исследование нормальной ткани того же органа путем возбуждения ее пучком монохроматического света с получением спектра флуоресценции и последующего возбуждения ее пучком полихроматического света в диапазоне длин волн 400-800 нм с получением спектра отражения, а при исследовании подозреваемой ткани перед получением спектра флуоресценции возбуждают ее пучком полихроматического света с получением спектра отражения, который сравнивают с аналогичным спектром нормальной ткани; о состоянии подозреваемой ткани судят по соотношению

где Imax - интенсивность максимума линии спектра в области 590-605 нм;
I(578) - интенсивность минимума линии спектра в точке 578 нм, соответствующего пику поглощения крови;
Imaxn, I(578)n - для нормальной ткани;
Imaxc, I(578)с - для подозреваемой ткани,
причем при q≈0 - диагностируют нормальную ткань, а при 0<q<0 - наличие онкологического заболевания с конкретизацией вида опухоли по величине q.

Известный прибор для диагностики онкологических заболеваний, состоящий из источника светового излучения, оптического блока связи, системы подачи и сбора излучения, анализатора спектров и компьютера, согласно изобретению содержит дополнительный источник излучения, а система подачи и сбора излучения смонтирована с разовой медицинской иглой, имеющей внутри моноволоконный жесткий световод.

Осуществление диагностики онкологических заболеваний в заявляемых условиях с использованием предлагаемого прибора повышает:
- точность определения за счет исключения ошибок, связанных с использованием усредненных эталонных образцов, вместо которых в качестве объекта сравнения используется нормальная ткань того же органа конкретного пациента;
- достоверность из-за изучения различных характеристик (флуоресценции и отражения) подозреваемой ткани;
- экспрессность (не более 10 с) за счет исключения операций подготовки и исследования эталонных образцов.

Кроме того, предлагаемые способ и прибор для диагностики онкологических заболеваний расширяют диапазон диагностируемых опухолей, обеспечивая возможность анализа мягких тканей, при этом содержат диагностический параметр, позволяющий классифицировать вид опухоли.

Анализ известных технических решений позволяет сделать вывод о том, что заявляемое изобретение не известно из уровня исследуемой техники, что свидетельствует о его соответствии критерию "новизна".

Сущность заявляемого изобретения для специалиста не следует явным образом из уровня техники, что позволяет сделать вывод о его соответствии критерию "изобретательский уровень".

Возможность диагностики онкологических заболеваний в условиях заявляемого способа с использованием предлагаемого прибора, изготавливаемого из серийно выпускаемых элементов, свидетельствует о соответствии заявляемого изобретения критерию "промышленная применимость".

Заявляемые "Способ и прибор для диагностики онкологических заболеваний" прошли клинические испытания в условиях клинического отделения областного онкологического диспансера г. Новосибирска.

На фиг.1 схематично представлен заявляемый прибор для диагностики онкологических заболеваний.

Обозначения на фиг.1:
Источники светового излучения:
1 - лазер ЛТН-402,
2 - галогенная лампа;
Оптический блок связи:
3 - конденсор,
4 - поворотное зеркало,
5 и 5' - передающий кабель;
Система подачи и сбора излучения:
6 - полупрозрачное зеркало,
7 - объектив (ахроматический),
8 - универсальный разъем стандарта SMA (входной),
9 - универсальный разъем стандарта SMA (выходной);
10 - анализатор спектров (многоканальный);
11 - компьютер;
12 - разовая медицинская игла с внутренним моноволоконным жестким световодом (на фиг.1 - не показан).

На фиг. 2-5 представлены:
фиг.2 - спектр флуоресценции нормальной ткани;
фиг.3 - спектр отражения нормальной ткани;
фиг.4 - спектр флуоресценции подозреваемой ткани;
фиг.5 - спектр отражения подозреваемой ткани.

Заявляемый прибор для диагностики онкологических заболеваний работает следующим образом.

Световое излучение от источников 1 или 2 через конденсор 3 при помощи поворотного зеркала 4 по волоконно-передающему кабелю 5 подается на входной разъем 8. Световое излучение может подаваться как от лазера 1 (для наблюдения флуоресценции), так и от галогенной лампы 2 (для наблюдения диффузно-отраженного излучения).

Затем излучение собирается, фокусируется линзами 7 в моноволоконный жесткий световод разовой медицинской иглы 12 (внешний диаметр иглы не более 1 мм) и по нему подается непосредственно на участок диагностируемой ткани.

Флуоресцентное либо диффузно-отраженное излучение по тому же световоду подается на полупрозрачное зеркало 6 и фокусируется на выходной разъем 9, с которого по волоконно-оптическому передающему кабелю 5 поступает на многоканальный анализатор спектров 10. С выхода анализатора спектров 10 сигнал подается на вход компьютера 11, на экране которого отображается спектр флуоресценции либо диффузного отражения в графическом виде.

Пример. Диагностика онкологического заболевания.

Больная З. , 49 лет, поступила в клиническое отделение областного онкологического диспансера г. Новосибирска (история болезни N 1416).

После тестирования молочной железы известными физическими методами (пальпация, маммография) предварительно установили наличие опухолевого процесса.

Затем больную направили на спектрофотометрическое исследование, при котором:
- перед исследованием подозреваемой ткани осуществили исследование нормальной ткани того же органа (молочной железы), для чего разовую медицинскую иглу (поз.12, фиг.1) ввели на глубину 5 мм, включили лазер (поз.1, фиг.1) и сняли спектр флуоресценции нормальной ткани после возбуждения ее пучком монохроматического света с длиной волны 532 нм, плотностью мощности 2,1, время 5 с - см. фиг.2.

После этого выключили лазер, включили галогенную лампу (поз.2, фиг.1) и, не двигая иглу, сняли спектр отражения нормальной ткани после возбуждения ее пучком полихроматического света в диапазоне длин волн 400-800 нм - см. фиг. 3.

Иглу, не вынимая, начали продвигать к месту опухолевого процесса, возбуждая ткань пучком полихроматического света (от галогенной лампы) в диапазоне длин волн 400-800 нм с одновременным снятием спектра отражения (см. фиг. 5), сравнением его с аналогичным спектром нормальной ткани (см. фиг.3), компьютерной обработкой результатов исследования и расчетом величины диагностического параметра q по формуле

где Imax - интенсивность максимума линии спектра в области 590-605 нм;
I(578) - интенсивность минимума линии спектра в точке 578 нм, соответствующего пику поглощения крови;
Imaxn, I(578)n - для нормальной ткани;
Imaxc, 1(578)с - для подозреваемой ткани.

Величина диагностического параметра q фиксируется на экране компьютера.

Спектры отражения отображают макроскопическую структуру ткани и использованы для обнаружения местонахождения опухоли.

Когда величина параметра q достигла +5% (в других случаях q=±5%), считали, что игла находится в опухолевой области.

Выключили галогенную лампу, включили лазер и сняли спектр флуоресценции подозреваемой ткани (см. фиг. 4) после возбуждения ее пучком монохроматического света с длиной волны 532 нм; плотностью мощности 2,1; время 5 с.

Спектры флуоресценции отображают биохимические внутриклеточные процессы ткани.

Полученный спектр флуоресценции подозреваемой ткани (фиг.4) сравнили со спектром флуоресценции нормальной ткани (фиг.2) с одновременной компьютерной обработкой результатов исследования и расчетом величины диагностического параметра q по формуле, приведенной выше.

Величина q фиксируется на экране компьютера.

Получили q= 30%, что соответствует наличию кистозного фиброаденоматоза (диагноз подтвержден данными гистологии 9663-67).

В условиях, аналогичных примеру, проведено исследование 140 пациентов, имеющих как доброкачественные, так и элокачественные новообразования в организме.

В результате этих исследований установлены следующие величины диагностического параметра q, позволяющие классифицировать вид опухоли:
-50 - -40% - дисплазии;
-40 - -20% - солидные раки;
-20 - -2% - раки скирр и любые опухоли с включением рака скирр;
+2 - +15% - инфильтрующие раки;
+15 - +25% - железисто-солидные раки;
+25 - +45% - фиброаденомы.

Использование заявляемых "Способа для диагностики онкологических заболеваний и прибора для его осуществления" по сравнению с известными способом и прибором, взятыми за прототип [см. патент США 4930516] обеспечивает следующие технические и общественно-полезные преимущества:
- повышение диагностической эффективности и экспрессности определения;
- возможность диагностики в соответствии с морфологической классификацией;
- уменьшение травматичности метода;
- возможность использования предлагаемого изобретения в качестве базы для разработки нового метода индивидуализации лечения онколологических заболеваний.

Похожие патенты RU2184486C2

название год авторы номер документа
СПОСОБ ПОСЛОЙНОГО ЛАЗЕРНОГО СПЕКТРАЛЬНОГО АНАЛИЗА 1997
  • Вовк С.М.
  • Кондратов С.В.
  • Соломко К.А.
RU2110777C1
Устройство флуоресцентно-отражательной спектроскопии для диагностики очаговых и диффузных новообразований при проведении тонкоигольной пункционно-аспирационной биопсии 2018
  • Мамошин Андриан Валерьевич
  • Потапова Елена Владимировна
  • Дрёмин Виктор Владимирович
  • Жеребцов Евгений Андреевич
  • Кандурова Ксения Юрьевна
  • Дунаев Андрей Валерьевич
RU2709830C1
СПОСОБ ПОВЫШЕНИЯ ТОЧНОСТИ ОБНАРУЖЕНИЯ ЗЛОКАЧЕСТВЕННЫХ НОВООБРАЗОВАНИЙ И ОПРЕДЕЛЕНИЯ ГРАНИЦ ИХ ЛОКАЛИЗАЦИИ 1996
  • Селиванов С.П.
  • Прокопьев В.Е.
  • Зырянов Б.Н.
RU2152162C1
УСТРОЙСТВО ДЛЯ ФЛУОРЕСЦЕНТНОЙ НАВИГАЦИИ В НЕЙРОХИРУРГИИ 2017
  • Лощенов Максим Викторович
  • Потапов Александр Александрович
  • Бородкин Александр Викторович
  • Гольбин Денис Александрович
  • Горяйнов Сергей Алексеевич
  • Линьков Кирилл Геннадьевич
  • Лощенов Виктор Борисович
RU2661029C1
Способ проведения биопсии у больных с подозрением на рак гортани 2020
  • Дайхес Николай Аркадьевич
  • Виноградов Вячеслав Вячеславович
  • Решульский Сергей Сергеевич
  • Прикулс Владислав Францевич
  • Ким Ирина Анатольевна
  • Карнеева Ольга Витальевна
  • Трофимов Евгений Иванович
  • Сивкович Ольга Олеговна
  • Хабазова Анна Михайловна
RU2729503C1
Способ проведения пункционной биопсии новообразований гортани 2022
  • Дайхес Николай Аркадьевич
  • Виноградов Вячеслав Вячеславович
  • Решульский Сергей Сергеевич
  • Гафурова Амина Игоревна
  • Хабазова Анна Михайловна
  • Исаева Мария Леонидовна
  • Карнеева Ольга Витальевна
  • Ким Ирина Анатольевна
  • Прикулс Владислав Францевич
RU2782465C1
СПОСОБ ДИАГНОСТИКИ ОБЛАСТЕЙ ПРОЛИФЕРАЦИИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1999
  • Трушин А.И.
  • Виноградов А.В.
  • Стаханов М.Л.
  • Эскин В.Г.
  • Вельшер Л.З.
RU2169922C1
Способ комбинированного лечения немышечно-инвазивного рака мочевого пузыря T1-T2 N0+M0 2022
  • Вусик Марина Владимировна
  • Меньшиков Кирилл Юрьевич
  • Черемисина Ольга Владимировна
  • Усынин Евгений Анатольевич
  • Хурсевич Наталья Александровна
  • Лушникова Надежда Андреевна
  • Юрмазов Захар Александрович
RU2787917C1
УСТРОЙСТВО ДЛЯ СПЕКТРАЛЬНО-ФЛУОРЕСЦЕНТНОГО КОНТРОЛЯ СОСТОЯНИЯ БИОЛОГИЧЕСКИХ ТКАНЕЙ В ПРОЦЕССЕ ФОТОДИНАМИЧЕСКОГО ВОЗДЕЙСТВИЯ С ПРИМЕНЕНИЕМ ФОТОСЕНСИБИЛИЗАТОРОВ НА ОСНОВЕ ХЛОРИНА E6 2022
  • Эфендиев Канамат Темботович
  • Алексеева Полина Михайловна
  • Линьков Кирилл Геннадьевич
  • Ширяев Артем Анатольевич
  • Лощенов Виктор Борисович
RU2807133C1
СПОСОБ ОПРЕДЕЛЕНИЯ ОПТИМАЛЬНЫХ ЭНЕРГЕТИЧЕСКИХ ПАРАМЕТРОВ ЛАЗЕРНО-ИНДУЦИРОВАННОЙ ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ ДИСПЛАЗИИ И РАКА ШЕЙКИ МАТКИ 2023
  • Алексеева Полина Михайловна
  • Эфендиев Канамат Темботович
  • Савельева Татьяна Александровна
  • Москалев Аркадий Сергеевич
  • Гилядова Аида Владимировна
  • Лощенов Виктор Борисович
RU2815258C1

Иллюстрации к изобретению RU 2 184 486 C2

Реферат патента 2002 года СПОСОБ ДИАГНОСТИКИ ОНКОЛОГИЧЕСКИХ ЗАБОЛЕВАНИЙ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Использование: при изучении, функциональной диагностике предраковых и раковых состояний в онкологии и других отраслях медицины, а также в приборостроении при изготовлении медицинской техники. Способ включает тестирование органов известными физическими методами, исследование нормальной ткани путем возбуждения ее пучком монохроматического света с получением спектра флуоресценции, последующего возбуждения ее пучком полихроматического света в диапазоне длин волн 400-800 нм с получением спектра отражения. Исследование подозреваемой ткани того же органа проводят с получением спектра отражения и спектра флуоресценции указанным выше образом, а также сравнение аналогичных спектров между собой, компьютерную обработку результатов исследований и расчет диагностического параметра по формуле

где Imaxn - интенсивность максимума линии спектра в области 590-605 нм; I(578) - интенсивность минимума линии спектра в точке 578 нм, соответствующего пику поглощения крови; Imax, I(578)n - для нормальной ткани; Imaxc, I(578)с - для подозреваемой ткани, причем, при q≈0 - диагностируют нормальную ткань, а при q0 - наличие онкологического заболевания с конкретизацией вида опухоли по величине q. Устройство состоит из двух источников светового излучения, оптического блока связи, системы подачи и сбора излучения, которая смонтирована с разовой медицинской иглой, имеющей внутри моноволоконный жесткий световод, анализатора спектров и компьютера. Технический результат: повышение диагностической эффективности и экпрессности определения, возможность диагностики в соответствии с морфологической классификацией опухолей, уменьшение травматичности метода, возможность использования предлагаемого изобретения в качестве базы для разработки нового метода индивидуализации лечения онкологических заболеваний. 2 c.п. ф-лы, 5 ил.

Формула изобретения RU 2 184 486 C2

1. Способ диагностики онкологических заболеваний, включающий тестирование органов физическими методами, исследование подозреваемой ткани путем возбуждения ее пучком монохроматического света с получением спектра флуоресценции и сравнения его с аналогичным спектром нормальной ткани с последующей компьютерной обработкой результатов исследований, отличающийся тем, что перед исследованием подозреваемой ткани осуществляют исследование нормальной ткани того же органа путем возбуждения ее пучком монохроматического света и последующего возбуждения ее пучком полихроматического света в диапазоне длин волн 400-800 нм с получением спектра отражения, а при исследовании подозреваемой ткани перед получением спектра флуоресценции возбуждают ее пучком полихроматического света с получением спектра отражения, который сравнивают с аналогичным спектром нормальной ткани, при этом о состоянии подозреваемой ткани судят по соотношению

где Imaxc, Imaxn - интенсивности максимума линии спектра в области 590-605 нм для соответственно подозреваемой и нормальной тканей;
I(578)c, I(578)n - интенсивности минимума линии спектра в точке 578 нм, соответствующего пику поглощения крови, для соответственно подозреваемой и нормальной тканей,
причем при q≈0 диагностируют нормальную ткань, а при - наличие онкологического заболевания с конкретизацией вида опухолей по величине q.
2. Прибор для диагностики онкологических заболеваний, состоящий из источника монохроматического светового излучения, оптического блока связи, системы подачи и сбора излучения, анализатора спектров и компьютера, отличающийся тем, что он содержит дополнительный источник полихроматического излучения, а система подачи и сбора излучения смонтирована с разовой медицинской иглой, имеющей внутри моноволоконный жесткий световод.

Документы, цитированные в отчете о поиске Патент 2002 года RU2184486C2

US 4930516 А, 1990
Способ интраоперационной диагностики жизнеспособности тканей 1986
  • Арзуманов Арутюн Самвелович
  • Крупенчук Александр Иванович
  • Барский Исаак Яковлевич
  • Папаян Гарри Вазгенович
  • Щеголева Наталья Евгеньевна
SU1466704A1

RU 2 184 486 C2

Авторы

Вовк С.М.

Кондратов С.В.

Наумов С.А.

Олефиренко С.С.

Петров В.И.

Пушкарев С.В.

Смолянинов Е.С.

Стафеев С.А.

Даты

2002-07-10Публикация

1996-08-06Подача