СОСТАВ ДЛЯ ГЛУШЕНИЯ СКВАЖИН Российский патент 2002 года по МПК E21B43/12 

Описание патента на изобретение RU2184839C2

Изобретение относится к нефтяной и газовой промышленности, в частности к технологическим жидкостям, применяемым для глушения скважин. Изобретение также может быть использовано в качестве составов, применяемых для ограничения водопритоков добывающих скважин, выравнивания профиля приемистости нагнетательных скважин и в качестве технологической жидкости для бурения при первичном вскрытии продуктивных пластов.

Каждая эксплуатационная скважина, как известно, не реже одного раза в год подвергается глушению с целью проведения спуска в скважину насосно-компрессорного оборудования, подземных ремонтов, смены насоса, промывки забоя от загрязнений и т.п. В этих условиях повышение качества ремонтных работ приобретает исключительную важность.

В настоящее время наиболее широкое применение нашли технологические жидкости для глушения (ЖГ) на водной основе, представляющие собой технические и пластовые воды, растворы минеральных солей (NaCl, CaCl2, MgCl2 и проч.), глинистые растворы полимерные системы. Однако использование водных растворов с большим удельным весом приводит, как правило, к снижению дебитов скважин по нефти, росту обводненности добываемой продукции и к длительным срокам из освоения в послеремонтный период. Это связано с кольматацией призабойной зоны пласта вследствие попадания механических примесей с забоя и из солевого раствора, воды, которая становится связанной с породой, ухудшая ее проницаемость.

Наиболее эффективными ЖГ являются обратные эмульсии, не оказывающие отрицательного влияния на коллекторские свойства пласта и позволяющие полностью исключить время освоения и выхода скважины на предшествующий глушению режим. Г. А.Орлов, М.Ш.Кендис., В.Н.Глущенко. Применение обратных эмульсий в нефтедобыче. М. : Недра, 1991, с. 147-159. При проникновении обратной эмульсии в пласт происходит изменение смачиваемости пористой среды, снижается поверхностное натяжение на границе нефть-вода-порода, уменьшается величина капиллярных сил с одновременным снижением глубины пропитки породы водой. Преимуществами применения обратных эмульсий также являются:
предотвращение набухания пород пласта, сложенных гидратирующими материалами;
антикоррозионные свойства и устойчивость к микробиологическому заражению;
высокая растворяющая способность по отношению к асфальтосмолистым и парафинистым соединениям:
отсутствие отрицательного влияния на процессы подготовки нефти при попадании эмульсии в систему сбора и транспорта нефти.

Наиболее близким к заявляемому способу (прототип) является применение в качестве ЖГ нефильтрующих инвертно-эмульсионных растворов на основе эмульгатора Нефтенол-НЗ с добавлением СаСl2, конденсата (стабильный бензин) и воды. Д.Ю.Крянев, А.А.Чистяков, Н.Ю.Елисеев, Р.С.Магадов, Д.С.Хлобыстов. Повышение нефтеотдачи пластов месторождений Западной Сибири. М., 1998, с. 22-26. В зависимости от забойного давления в скважине плотность ЖГ может варьироваться от 0,95 до 1,13 г/см3.

К недостаткам рассматриваемых инвертно-эмульсионных растворов следует отнести их недостаточную седиментационную и термическую (до 60oC) стабильность, невысокую плотность, что существенно ограничивает область ее применения. Так при глушении скважин, обладающих высоким пластовым давлением, необходимо применение ЖГ с плотностью до 1,20 г/см3 и более. Кроме того, применение конденсата в качестве дисперсионной фазы ограничено вследствие его высокой цены и повышенной (по сравнению с нефтью) взрывопожароопасностью.

Указанные недостатки преодолены в представленном изобретении. Технический результат достигается тем, что состав представляющий собой инвертную эмульсионно-суспензионную систему (ИЭСС) на основе минерализованной водной дисперсной фазы с плотностью от 1,05 до 1,39 г/см3 и углеводородной дисперсионной фазы, дополнительно содержит стабилизатор с размером дискретных частиц от 0,005 до 0,04 мкм в количестве от 0,3 до 1,0 мас.% от объема дисперсионной фазы, при этом в качестве эмульгатора и стабилизатора используют модифицированный парами диметилдихлорсилана кремнезем, в котором у эмульгатора от 40 до 50% поверхностных силанольных групп замещены на углеводородные радикалы, а у стабилизатора поверхностные силанольные группы полностью замещены на алкильные радикалы, причем эмульгатор используют в количестве от 1,0 до 3,5 мас.% от объема дисперсионной фазы.

В качестве углеводородной дисперсионной фазы используют нефть или продукты ее переработки в соотношении с дисперсной фазой от 1/1 до 3/1 соответственно.

Инвертная эмульсионно-суспензионная система имеет плотность от 1,08 до 1,30 г/см3.

Модифицирование поверхности высокодисперсного кремнезема проводили парами диметилдихлорсилана по методу А. В. Смирнов, В.А.Котельников. Пат. РФ 2089499, 1997. Аналогичным способом проводили ХМК с полным замещением поверхностных силанольных групп на алкильные радикалы (% гидрофобности 99,0-99,8).

Применение эмульгатора и стабилизатора эмульсии - дифильного и гидрофобного ХМК увеличивает агрегативную устойчивость образующейся инвертной эмульсионно-суспензионный системы и прочность коагуляционной сетки. Размеры дискретных частиц химически модифицированного аэросила (0,005-0,04 мкм) позволяют формировать ультрадисперсную систему, в которой от 60 до 80% частиц эмульсии имеют диаметр менее 1 мкм.

Примеры конкретного выполнения
Пример 1 (мас.%). В колбу, снабженную якорной мешалкой с частотой вращения 103 об/мин, помещают 38 дегазированной нефти с вязкостью 15,4 мПа•с и d= 0,866 г/см3 и при интенсивном перемешивании добавляют 0,8 эмульгатора и 0,2 стабилизатора. После 5 мин перемешивания в колбу с помощью бюретки постепенно в течение 5 мин добавляют 61 тяжелой воды с плотностью 1,39 г/см3, минерализованной СaСl2 (100 мл Н2О+40 г соли). Перемешивание продолжают еще 10 мин. По окончании диспергирования образовавшуюся эмульсию выдерживают в течение 24 час для разгазирования и стабилизации агрегативных процессов, а затем определяют пластическую вязкость, термо- и седиментационную стабильность и электростабильность.

Результаты испытаний полученной эмульсии указывают на ее высокие параметры как при комнатной температуре, так и после термообработки: электростабильность превышает 600 В, пластическая вязкость составляет 913 мПа.с, динамическое напряжение сдвига 490 gПа. При прогреве в термошкафу при 80oС в течение 8 часов эмульсия не разрушалась, что свидетельствует о ее высокой термо- и седиментационной стабильности.

Для определения фильтруемости полученный эмульсионно-суспензионный раствор с содержанием дисперсной/дисперсионной фаз 1/1 (объем.) фильтровали через водонасыщенные и соляронасыщенные песчаные образцы при температуре 30oС и перепаде давления в 13 кг/см2 (см. чертеж). Как видно из чертежа, фильтруемость раствора незначительная, особенно в том случае, когда песчаник насыщен водой (кривая 2): при продавливании раствора вязкость последнего увеличивается, вследствие чего фильтруемость быстро падает до нуля. Это указывает на возможность применения полученной инвертной системы (d=1,21 г/см3) для закупорки прискважинной зоны коллектора при глушении скважин.

Пример 2. Отдельно приготовленные по рецептуре примера 1 углеводородная дисперсионная фаза и водный раствор СaСl2 загружают в колбу и после 15 мин интенсивного перемешивания образуется эмульсионно-суспензионная система, которая по своим показателям практически не отличается от полученной в примере 1: пластическая вязкость 920 мПа•с, динамическое напряжение сдвига 478 gПа.

Полученные данные свидетельствуют о высокой эмульгирующей способности используемого ХМК, не зависящий от порядка ввода фаз. Это значительно упрощает приготовление ЖГ непосредственно на нефтепромысле.

Примеры 3-10. В таблице 1 приведены данные по исследованию влияния соотношения фаз и концентрации эмульгатора на свойства получаемых инвертных эмульсионно-суспензионных систем.

Приведенные данные показывают:
- оптимальная концентрация эмульгатора составляет 1,0-1,5 мас.% ко всему объему получаемой системы;
- вязкость и плотность эмульсионно-суспензионных растворов увеличивается с ростом содержания дисперсной фазы;
- оптимальное соотношение дисперсная /дисперсионная фазы находится в пределах 1/1-3/1 соответственно, т. к. последующее увеличение содержания водной фазы приводит к резкому увеличению вязкости системы.

Примеры 11-15. В таблице 2 приведены примеры влияния природы дисперсной фазы на свойства получаемых инвертных эмульсионно-суспензионных систем.

Результаты исследований показывают, что вязкость образующихся растворов в значительной степени зависит от состава используемых нефтепродуктов и, прежде всего, от содержания в нефти соединений, выполняющих функцию ПАВ. Так применение высоковязкой нефти, содержащей 18,3% смол и 11,75% асфальтенов, приводит к существенному увеличению max вязкости получаемых инвертных систем (сравн. примеры 11 и 12). Влияние "индивидуальных" углеводородов, не содержащих примесей (дизельное топливо, керосин, ШФЛУ), на вязкостные характеристики, термо- и седиментационную стабильность незначительно.

Пример 16. Для глушения скважины 1047 Ромашкинского месторождения была приготовлена инвертная эмульсионно-суспензионная система следующего состава: девонская нефть (39 мас.%), пластовая вода, минерализованная СаСl2 до плотности 1,27 г/см3 ( 59,7 мас.%), эмульгатор - ХМК, обладающий свойствами ПАВ (1 мас.%) и стабилизатор - гидрофобный ХМК (0,3 мас.%). Система имела следующие параметры: плотность 1,11 г/см3, электростабильность 510 В, условная вязкость 450 с. Скважина (НКТ 60 мм, глубина спуска насоса 950 м, искусственный забой 1286 м, интервал перфорации 1105,6-1114,4 м) заглушена путем закачки в затрубное пространство инвертного раствора в объеме 11 м3 ниже насоса, а выше насоса - в НКТ и затрубное пространство раствором СaCl2 с плотностью 1,10 г/см3.

В результате использования данной технологии средний ремонтный период сократился на 2 суток (по сравнению с глушением глинистыми растворами), а время выхода скважины на режим оказалось равным времени откачки жидкости глушения. Дебит после освоения увеличился на 10%.

Таким образом, применение разработанной инвертной эмульсионно-суспензионной системы для глушения скважин позволяет:
вводить скважины в эксплуатацию после ремонтных работ без дополнительных затрат времени и средств на их освоение с повышенными дебитами и сократить время ремонта;
существенно сократить расход ЖГ благодаря высоким структурно-реологическим свойствам применяемой системы;
снизить расход и исключить трудоемкий процесс растворения ПАВ при приготовлении инвертных эмульсий в качестве ЖГ.

Похожие патенты RU2184839C2

название год авторы номер документа
СПОСОБ СЕЛЕКТИВНОГО ОГРАНИЧЕНИЯ ВОДОПРИТОКОВ В ЭКСПЛУАТАЦИОННЫХ СКВАЖИНАХ 2000
  • Котельников В.А.
  • Евстифеев С.В.
  • Иванов В.В.
  • Лемешко Н.Н.
  • Салихов И.М.
  • Хусаинов В.М.
  • Ишкаев Р.К.
RU2184836C2
Инвертная кислотная микроэмульсия для обработки нефтегазового пласта 2001
  • Заволжский В.Б.
  • Котельников В.А.
RU2220279C2
ЭМУЛЬСИОННЫЙ БУРОВОЙ РАСТВОР НА УГЛЕВОДОРОДНОЙ ОСНОВЕ 2002
  • Котельников В.А.
  • Ангелопуло О.К.
  • Щукин В.Н.
  • Лубяный Д.А.
  • Евстифеев С.В.
  • Шиц Л.А.
RU2211239C1
ТАМПОНАЖНЫЙ СОСТАВ ДЛЯ СЕЛЕКТИВНОГО ОГРАНИЧЕНИЯ ВОДОПРИТОКОВ В ДОБЫВАЮЩИХ СКВАЖИНАХ 2009
  • Кокорев Валерий Иванович
  • Котельников Виктор Александрович
RU2391378C1
СПОСОБ РАЗРАБОТКИ НЕФТЯНЫХ МЕСТОРОЖДЕНИЙ 2001
  • Котельников В.А.
  • Шарбатова И.Н.
  • Кондаурова Г.Ф.
  • Якимов А.С.
RU2232262C2
СПОСОБ РАЗРАБОТКИ НЕФТЯНЫХ МЕСТОРОЖДЕНИЙ 2001
  • Грайфер В.И.
  • Котельников В.А.
RU2191257C1
СПОСОБ ПОЛУЧЕНИЯ ГИДРОФОБНОГО, ОРГАНОФИЛЬНОГО КРЕМНЕЗЕМА 1999
  • Грайфер В.И.
  • Котельников В.А.
RU2152967C1
Способ стабилизации модифицированного полиакриламида 2002
  • Заволжский В.Б.
  • Котельников В.А.
  • Персиц И.Е.
RU2222696C1
ИНВЕРТНАЯ НЕФТЯНАЯ ЭМУЛЬСИЯ 2002
  • Старкова Н.Р.
  • Бодрягин А.В.
RU2196223C1
ТАМПОНАЖНЫЙ ЦЕМЕНТНЫЙ РАСТВОР СЕЛЕКТИВНОГО ДЕЙСТВИЯ 2008
  • Грайфер Валерий Исаакович
  • Котельников Виктор Александрович
  • Галустянц Владилен Аршакович
RU2370516C1

Иллюстрации к изобретению RU 2 184 839 C2

Реферат патента 2002 года СОСТАВ ДЛЯ ГЛУШЕНИЯ СКВАЖИН

Изобретение относится к нефтяной и газовой промышленности, а именно к технологическим жидкостям для глушения скважин. Технический результат - повышение термо- и седиментационной стабильности инвертной эмульсионно-суспензионной системы. Состав для глушения скважин представляет собой инвертную эмульсионно-суспензионную систему на основе минерализированной водной дисперсной фазы с плотностью от 1,05 до 1,39 г/см3 и углеводородной дисперсионной среды с добавками эмульгатора. В качестве эмульгатора используют модифицированный парами диметилдихлорсилана кремнезем, в котором от 40 до 50% поверхностных силанольных групп замещены на углеводородные радикалы, в количестве от 1,0 до 3,5 мас.% от объема дисперсионной фазы. В качестве углеводородной дисперсионной фазы используется нефть или продукты ее переработки в соотношении с дисперсионной фазой от 1/1 до 1/3 соответственно. Состав дополнительно содержит стабилизатор - гидрофобный модифицированный парами диметилдихлорсилана кремнезем с размером дискретных частиц 0,005-0,04 мкм в количестве 0,3-1,0 мас.% от объема дисперсионной фазы. Плотность инвертной эмульсионно-суспензионной системы, применяемой в качестве жидкости для глушения, может достигать 1,08-1,30 г/см3. 2 з.п. ф-лы, 1 ил., 2 табл.

Формула изобретения RU 2 184 839 C2

1. Состав для глушения эксплуатационных скважин, представляющий собой инвертную эмульсионно-суспензионную систему на основе минерализованной водной дисперсной фазы плотностью от 1.05. до 1,39 г/см3 и углеводородной дисперсионной фазы с добавками эмульгатора, отличающийся тем, что состав дополнительно содержит стабилизатор с размером дискретных частиц от 0,005 до 0,04 мкм в количестве от 0,3 до 0,1 мас. % от объема дисперсионной фазы, при этом в качестве эмульгатора и стабилизатора используют модифицированный парами диметилдихлорсилана кремнезем, в котором у эмульгатора от 40 до 50% поверхностных силамольных групп замещены на углеводородные радикалы, а у стабилизатора поверхностные силамольные группы полностью замещены на алкильные радикалы, причем эмульгатор используют в количестве от 1,0 до 3,5 мас. % от объема дисперсионной фазы. 2. Состав по п. 1, отличающийся тем, что в качестве углеводородной дисперсионной фазы используют нефть или продукты ее переработки в соотношении с дисперсной средой от 1/1 до 1/3 соответственно. 3. Состав по п. 1, отличающийся тем, что инвертная эмульсионно-суспензионная система имеет плотность 1,08-1,30 г/см3.

Документы, цитированные в отчете о поиске Патент 2002 года RU2184839C2

КРЯНЕВ Д.Ю
и др
Повышение нефтеотдачи пластов месторождений Западной Сибири
- М., 1998, с
Машина для добывания торфа и т.п. 1922
  • Панкратов(-А?) В.И.
  • Панкратов(-А?) И.И.
  • Панкратов(-А?) И.С.
SU22A1
Жидкость для глушения скважин 1970
  • Селезнева Алла Александровна
  • Горшков Александр Константинович
  • Зосименко Тамара Леонидовна
  • Дючин Алий Иванович
SU554396A1
Жидкость для глушения скважины 1979
  • Чернышева Тамара Леонидовна
  • Шульгина Валентина Александровна
  • Бальцер Вадим Владимирович
SU796394A1
Способ глушения скважины 1988
  • Хисамутдинов Наиль Исмагзамович
  • Телин Алексей Герольдович
  • Тарасова Нина Иосифовна
  • Моисеев Анатолий Семенович
  • Малюшова Марина Петровна
SU1694868A1
СПОСОБ ГЛУШЕНИЯ СКВАЖИНЫ 1997
  • Богомольный Е.И.
  • Насыров А.М.
  • Просвирин А.А.
  • Малюгин В.М.
  • Васильев А.А.
RU2132936C1
СПОСОБ ГЛУШЕНИЯ СКВАЖИН 1992
  • Телин А.Г.
  • Артемьев В.Н.
  • Хисамутдинов Н.И.
  • Ежов М.Б.
  • Галанцев И.Н.
  • Латыпов А.Р.
  • Хакимов А.М.
  • Теняков В.А.
  • Исмагилов Т.А.
RU2046932C1
ЖИДКОСТЬ ДЛЯ ГЛУШЕНИЯ СКВАЖИН 1993
  • Ивченков А.М.
RU2071551C1
СПОСОБ ПРОИЗВОДСТВА СОЛОДА 2002
  • Квасенков О.И.
RU2221012C1
US 4630679 A, 23.12.1986
СПОСОБ ПРОГНОЗИРОВАНИЯ ИСХОДА БЕРЕМЕННОСТИ У ЖЕНЩИН С УГРОЖАЮЩИМ ВЫКИДЫШЕМ РАННИХ СРОКОВ 1994
  • Посисеева Л.В.
  • Бойко Е.Л.
RU2103686C1

RU 2 184 839 C2

Авторы

Грайфер В.И.

Котельников В.А.

Евстифеев С.В.

Персиц И.Е.

Мартьянова С.К.

Даты

2002-07-10Публикация

2000-04-25Подача