Изобретение относится к области спектрального анализа и может быть использовано при спектральном анализе светового излучения.
Одним из классических устройств, используемым для спектрального анализа, является интерферометр, содержащий оптически сопряженные источник светового излучения, отражающие зеркала, светоделительную пластину, фотодетектор и спектроанализатор [Мерц Л. Интегральные преобразования в оптике. М.: Мир, 1969, с.80-83].
К недостаткам данного интерферометра можно отнести его большую дисперсию, что существенно сужает рабочий диапазон измерений.
Наиболее близким по технической сущности и достигаемому эффекту к предлагаемому изобретению является интерферометр, содержащий оптически сопряженные источник светового излучения, отражающее зеркало и периодическую решетчатую структуру, расположенную между источником светового излучения и отражающим зеркалом и содержащую тонкий частично пропускающий фотоэлектрический слой, а также токопроводящие электроды [Атнашев А.В., Атнашев В.Б., Атнашев П. В. Метод интерференции на дифракционной решетке. Метод Атнашева. Екатеринбург: УГТУ-УПИ, 2000, с. 18 (прототип)].
К недостаткам данного интерферометра можно отнести недостаточно высокую точность измерения из-за влияния светового фона при измерении постоянной составляющей анализируемого излучения.
Задачей изобретения является повышение точности измерения при измерении постоянной составляющей анализируемого излучения.
Поставленная задача может быть решена за счет того, что в интерферометре, содержащем оптически сопряженные источник светового излучения, отражающее зеркало и периодическую решетчатую структуру, расположенную между источником светового излучения и отражающим зеркалом, и содержащую тонкий (менее λ/2) частично пропускающий фотоэлектрический слой, периодическая решетчатая структура образована системой токопроводящих электродов, нанесенных на или в тонкий (менее λ/2) частично пропускающий фотоэлектрический слой, при этом два из этих электродов выполнены встречно-штыревыми, а третий выполнен зигзагообразным с возможностью охвата с трех сторон каждого из двух электродов, а расстояние между соседними первыми двумя встречно-штыревыми электродами равно d/2, где d определяется из формулы sin θ = λ/2d, где θ - угол между плоскостью фотоэлектрического слоя и волновым фронтом светового излучения, λ - длина волны светового излучения.
Для снижения влияния дифракционного разложения исследуемого светового излучения на аналитический сигнал токопроводящие электроды могут быть выполнены из прозрачного материала. С этой же целью токопроводящие электроды могут быть выполнены из металла, внедренного в материал фотоэлектрического слоя.
Сущность изобретения поясняется чертежами (фиг.1 и фиг.2), на которых представлена схема интерферометра (фиг.1) и периодическая решетчатая структура, образованная системой из трех токопроводящих электродов (фиг.2).
Интерферометр содержит оптически сопряженные источник 1 светового излучения, отражающее зеркало 2 и периодическую решетчатую структуру 3, расположенную между источником 1 светового излучения и отражающим зеркалом 2 (фиг. 1) и содержащую тонкий (менее λ/2) частично пропускающий фотоэлектрический слой 4. Периодическая решетчатая структура 3 образована системой из трех токопроводящих электродов 5, нанесенных на или в тонкий (менее λ/2) частично пропускающий фотоэлектрический слой 4, при этом два из этих электродов 6, 7 выполнены встречно-штыревыми, а третий 8 выполнен зигзагообразным с возможностью охвата с трех сторон каждого из двух электродов 6, 7, а расстояние между соседними первыми двумя встречно-штыревыми электродами 6, 7 равно d/2, где d определяется из формулы sin θ = λ/2d, где θ - угол между плоскостью фотоэлектрического слоя и волновым фронтом светового излучения, λ - длина волны светового излучения (фиг. 2). При этом образуются две периодические решетчатые структуры, сдвинутые одна относительно другой на d/2, что обеспечивает селективное выделение определяемой световой волны за счет воздействия узлов и пучностей стоячей световой волны на две соседние зоны.
Токопроводящие электроды 6, 7 и 8 электрически соединены с входом сумматора 9.
Токопроводящие электроды 6, 7 и 8 могут быть выполнены из прозрачного материала. А также токопроводящие электроды 6, 7 и 8 могут быть выполнены путем вакуумного напыления тонкого слоя металла (по конфигурации этих электродов), например меди, на фотоэлектрический слой сульфида кадмия с последующим нагревом до 400oС. При этом за счет процесса термодиффузии меди в решетку сульфида кадмия происходит образование токопроводящих электродов 6, 7 и 8.
Интерферометр работает следующим образом.
Световой поток от источника 1 светового излучения поступает на отражающее зеркало 2, отражается от него и в виде стоячей световой волны поступает на периодическую решетчатую структуру 3. За счет того, что периодическая решетчатая структура 3 образована системой из трех токопроводящих электродов 5, нанесенных на или в тонкий (менее λ/2) частично пропускающий фотоэлектрический слой 4, при этом два из этих электродов 6, 7 выполнены встречно-штыревыми, а третий 8 выполнен зигзагообразным с возможностью охвата с трех сторон каждого из двух электродов 6, 7, возможна регистрация системы узлов и пучностей напряженности электрического поля стоячей световой волны. При совмещении штрихов проводящих электродов 6 периодической решетчатой структуры 3 с максимумом пучностей напряженности электрического поля стоячей световой волны происходит воздействие электрического поля стоячей световой волны на тонкий частично пропускающий фотоэлектрический слой 4 в зонах, расположенных между штырями электрода 6 и охватывающим эти зоны с трех сторон электродом 8. При этом на тонкий частично пропускающий фотоэлектрический слой 4 в соседних зонах, ограниченных штырями электрода 7 и охватывающим эти зоны с трех сторон электродом 8, воздействует максимум магнитного поля стоячей световой волны с получением минимального электрического сигнала в этой зоне, так как расстояние между соседними первыми двумя встречно-штыревыми электродами 6 и 7 равно половине периода d стоячей световой волны. Электрический сумматор 9 обеспечивает получение разностного электрического сигнала с соседних зон, пропорциональный интенсивности определяемой длины волны, который поступает с токопроводящих электродов 6, 7 и 8. В то время как световое фоновое излучение других длин волн оказывает равномерно распределенное воздействие на фоточувствительные зоны, ограниченные токопроводящими электродами 6, 8 и 7, 8, и, следовательно, вычитается на сумматоре 9.
Поставленная задача повышения точности измерения при измерении постоянной составляющей анализируемого излучения также может быть решена за счет того, что в интерферометре, содержащем оптически сопряженные источник светового излучения, отражающее зеркало и периодическую решетчатую структуру, расположенную между источником светового излучения и отражающим зеркалом и содержащую тонкий (менее λ/2) частично пропускающий фотоэлектрический слой, периодическая решетчатая структура образована полупроводниковой системой из трех областей, нанесенных на или в тонкий (менее λ/2) частично пропускающий фотоэлектрический слой, при этом две из этих областей имеют встречно-штыревую конфигурацию, а третья область выполнена зигзагообразной с возможностью охвата с трех сторон штырей встречно-штыревых конфигураций, а расстояние между соседними первыми двумя встречно-штыревыми областями равно d/2, где d определяется из формулы sin θ = λ/2d, где θ - угол между плоскостью фотоэлектрического слоя и волновым фронтом светового излучения, λ - длина волны светового излучения.
Сущность изобретения поясняется чертежами (фиг.1 и фиг.2), на которых представлена схема интерферометра (фиг. 1) и периодическая решетчатая структура, образованная системой из трех токопроводящих электродов (фиг.2).
Интерферометр содержит оптически сопряженные источник 1 светового излучения, отражающее зеркало 2 и периодическую решетчатую структуру 3, расположенную между источником 1 светового излучения и отражающим зеркалом 2 (фиг. 1) и содержащую тонкий (менее λ/2) частично пропускающий фотоэлектрический слой 4. Периодическая решетчатая структура 3 образована системой из трех областей 5, нанесенных на или в тонкий (менее λ/2) частично пропускающий фотоэлектрический слой 4, при этом две из этих областей 6, 7 имеют встречно-штыревую конфигурацию, а третья область 8 выполнена зигзагообразной с возможностью охвата с трех сторон штырей встречно-штыревых конфигураций, а расстояние между соседними первыми двумя встречно-штыревыми областями 6, 7 равно d/2, где d определяется из формулы sin θ = λ/2d, где θ - угол между плоскостью фотоэлектрического слоя и волновым фронтом светового излучения, λ - длина волны светового излучения (фиг.2). При этом образуются две периодические решетчатые структуры, сдвинутые одна относительно другой на d/2, что обеспечивает селективное выделение определяемой световой волны за счет воздействия узлов и пучностей стоячей световой волны на две соседние зоны.
Области 6, 7 и 8 электрически соединены с входом сумматора 9. Системы областей 6, 7 и 8 можно выполнить, например, из слоя сульфида кадмия различной толщины, нанесенного на тонкий (менее λ/2) частично пропускающий фотоэлектрический слой, например, того же сульфида кадмия. Возможны и иные варианты осуществления изобретения.
Интерферометр работает следующим образом.
Световой поток от источника 1 светового излучения поступает на отражающее зеркало 2, отражается от него и в виде стоячей световой волны поступает на периодическую решетчатую структуру 3. За счет того, что периодическая решетчатая структура 3 образована полупроводниковой системой из трех областей 5, нанесенных на или в тонкий (менее λ/2) частично пропускающий фотоэлектрический слой 4, при этом две из этих областей 6, 7 имеют встречно-штыревую конфигурацию, а третья область 8 выполнена зигзагообразной с возможностью охвата с трех сторон штырей встречно-штыревых конфигураций, возможна регистрация системы узлов и пучностей напряженности электрического поля стоячей световой волны. При совмещении штырей области 6 периодической решетчатой структуры 3 с максимумом пучности напряженности электрического поля стоячей световой волны происходит максимальное воздействие электрического поля стоячей световой волны на тонкий частично пропускающий фотоэлектрический слой 4 в зонах, расположенных между штырями области 6 и охватывающей эти зоны с трех сторон областью 8. При этом на тонкий частично пропускающий фотоэлектрический слой 4 в соседних зонах, ограниченных штырями области 7 и охватывающей эти зоны с трех сторон областью 8, воздействует максимум магнитного поля стоячей световой волны с получением минимального электрического сигнала в этой зоне, так как расстояние между соседними первыми двумя встречно-штыревыми областями 6 и 7 равно половине периода d стоячей световой волны. Электрический сумматор 9 обеспечивает получение разностного электрического сигнала с соседних зон, пропорциональный интенсивности определяемой длины волны, который поступает с областей 6, 7 и 8. В то время как световое фоновое излучение других длин волн оказывает равномерно распределенное воздействие на фоточувствительные зоны, ограниченные областями 6, 8 и 7, 8, и, следовательно, вычитается на сумматоре 9.
Предлагаемый интерферометр позволяет существенно повысить точность измерений за счет учета фонового излучения.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ СПЕКТРОМЕТРИИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВАРИАНТЫ) | 2000 |
|
RU2177605C1 |
ИНТЕРФЕРОМЕТР | 2001 |
|
RU2188401C1 |
СПОСОБ СПЕКТРОМЕТРИИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВАРИАНТЫ) | 2001 |
|
RU2190197C1 |
СПОСОБ СПЕКТРОМЕТРИИ И ИНТЕРФЕРОМЕТР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2001 |
|
RU2189017C1 |
СПОСОБ СПЕКТРОМЕТРИИ И ИНТЕРФЕРОМЕТР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВАРИАНТЫ) | 2002 |
|
RU2207526C1 |
СПОСОБ СПЕКТРОМЕТРИИ И ИНТЕРФЕРОМЕТР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2002 |
|
RU2207527C1 |
СПОСОБ ВИДЕНИЯ ОБЪЕКТОВ С ПОМОЩЬЮ ЛАЗЕРНОЙ ПОДСВЕТКИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВАРИАНТЫ) | 2002 |
|
RU2207591C1 |
ИНТЕРФЕРОМЕТР (ВАРИАНТЫ) | 2002 |
|
RU2209406C1 |
СПОСОБ ИЗМЕРЕНИЯ СКОРОСТИ ПОТОКА ЖИДКОСТИ ИЛИ ГАЗА | 2002 |
|
RU2212670C1 |
СПОСОБ ПЕРЕДАЧИ И ПРИЕМА ОПТИЧЕСКИХ СИГНАЛОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2001 |
|
RU2195693C1 |
Изобретение относится к области спектрального анализа. Интерферометр содержит оптически сопряженные источник светового излучения, отражающее зеркало и периодическую решетчатую структуру, расположенную между источником светового излучения и отражающим зеркалом. Периодическая решетчатая структура образована системой токопроводящих электродов, нанесенных на или в тонкий (менее λ/2) частично пропускающий фотоэлектрический слой, при этом два из этих электродов выполнены встречно-штыревыми, а третий выполнен зигзагообразным с возможностью охвата с трех сторон каждого из двух электродов, а расстояние между соседними первыми двумя встречно-штыревыми электродами равно d/2, где d определяется из формулы sin θ = λ/2d, где θ - угол между плоскостью фотоэлектрического слоя и волновым фронтом светового излучения, λ - длина волны светового излучения. Технический результат - существенное повышение точности измерений за счет учета фонового излучения. 2 с. и 2 з.п. ф-лы, 2 ил.
US 4273445, 16.06.1981 | |||
ФОТОДЕТЕКТОР | 1991 |
|
SU1797418A1 |
US 4126834, 21.11.1978 | |||
US 4951061, 21.08.1990 | |||
US 3908263, 30.09.1975 | |||
US 5117270, 26.05.1992 | |||
US 4696648, 29.09.1987 | |||
US 4258254, 24.03.1981 | |||
Установка для определения термостойкости материалов | 1982 |
|
SU1065732A1 |
СПОСОБ СОЗДАНИЯ ЗАЩИТНОГО ГАРНИСАЖА В ГОРНЕ ДОМЕННОЙ ПЕЧИ | 2003 |
|
RU2223329C1 |
Устройство для прессования набивных бетонных и железобетонных свай сжатыми воздухом или водой | 1938 |
|
SU63421A1 |
СПОСОБ РЕГУЛИРОВАНИЯ РЕЖИМА ТЕРМОЭЛЕКТРИЧЕСКОЙ БАТАРЕИ | 1996 |
|
RU2100876C1 |
Авторы
Даты
2002-08-27—Публикация
2001-06-22—Подача