СПОСОБ КОНТРОЛЯ ОБОГАЩЕНИЯ ГАЗООБРАЗНОГО ГЕКСАФТОРИДА УРАНА УРАНОМ-235 Российский патент 2002 года по МПК G01T1/00 G01N23/00 

Описание патента на изобретение RU2189612C1

Изобретение относится к способам контроля обогащения газообразного гексафторида урана ураном-235 и может быть применено на заводах по разделению изотопов урана.

Известен способ [1] контроля обогащения газообразного гексафторида урана ураном-235, заключающийся в облучении потоком гамма-излучения первой камеры с гексафторидом урана, одновременной регистрацией интенсивности гамма-излучения урана-235 от гексафторида урана, находящегося во второй камере, параллельно соединенной с первой, и интенсивности характеристического Kα излучения урана от первой камеры. Концентрацию урана-235 определяют по формуле

где С5 - концентрация урана-235 в гексафториде урана;
I - интенсивность собственного гамма-излучения урана-235;
I - интенсивность характеристического рентгеновского Kα излучения урана;
α - градуировочная постоянная.

Сложность реализации этого способа требует больших аппаратурных затрат и значительных расходов на эксплуатацию установок. Способ требует применения внешнего радиоизотопного источника с энергией гамма-излучения выше К-края поглощения урана.

Наиболее близким к предлагаемому является способ [2] контроля обогащения газообразного гексафторида урана, заключающийся в облучении потоком моноэнергетического гамма-излучения камеры с гексафторидом урана, одновременном измерении от этой камеры интенсивности гамма-излучения урана-235 и интенсивности прошедшего через камеру потока моноэнергетического гамма-излучения. По отношению интенсивности собственного гамма-излучения урана-235 к степени ослабления моноэнергетического гамма-излучения от внешнего радиоизотопного источника определяют концентрацию урана-235 в гексафториде урана по формуле

где С5 - концентрация урана-235 в гексафториде урана;
I - интенсивность собственного гамма-излучения урана-235 от гексафторида урана;
N0 - интенсивность потока моноэнергетического гамма-излучения, прошедшего от внешнего источника излучения через камеру без гексафторида урана;
N - интенсивность потока моноэнергетического гамма-излучения, прошедшего от внешнего источника излучения через камеру с гексафторидом урана;
α - градуировочная постоянная.

Способ требует значительных аппаратурных и больших эксплуатационных затрат из-за применения внешнего радиоизотопного источника гамма-излучения.

Задача заключается в снижении аппаратурных затрат на реализацию способа измерения, в исключении из процесса измерения внешнего радиоизотопного источника.

Техническое решение достигается тем, что согласно способу контроля обогащения гексафторида урана, заключающемуся в измерении от камеры с гексафторидом урана интенсивности гамма-излучения урана-235, одновременно измеряют давление и температуру находящегося в этой камере гексафторида урана, а содержание урана-235 определяют по формуле

где С5 - концентрация урана-235 в гексафториде урана;
I - интенсивность гамма-излучения урана-235;
t - температура гексафторида урана;
Р - давление гексафторида урана;
α - градуировочная постоянная.

В сравнении с прототипом предложенное решение обладает новизной, т.к. значительно упрощает аппаратурную реализацию способа, исключает применение внешнего радиоактивного источника, снижает эксплуатационные расходы оборудования.

В патентной и научно-технической литературе не описаны аналогичные способы. Следовательно, предложенное решение отвечает критерию "существенные отличия".

На фиг.1 изображена функциональная схема экспериментальной установки для реализации предложенного способа.

На фиг. 2 и 3 представлены результаты экспериментальных измерений концентрации урана-235 по предлагаемому и известному способам, соответственно, в зависимости от давления гексафторида урана.

Изображенная на фиг. 1 установка содержит цилиндрическую камеру 1, детектор 2, прибор измерения давления 3, датчик температуры 4, блок сбора данных 5, анализатор 6, вычислительный комплекс 7, входной клапан 8, выходной клапан 9.

Детектор 2 регистрирует гамма-излучение урана-235 от находящегося в камере 1 гексафторида урана, одновременно прибором 3 измеряется давление и датчиком 4 температура гексафторида урана в этой камере. Концентрацию урана-235 в гексафториде урана определяют по формуле (2).

В выражении (2) величина интенсивности I собственного гамма-излучения урана-235 пропорциональна содержанию урана-235 в гексафториде урана. Значение величины общего содержания урана в газе пропорционально P/t. В процессе обогащения урана присутствие в гексафториде урана газообразных соединений других элементов маловероятно.

Погрешность δ измерения обогащения по предлагаемому способу обусловлена тремя независимыми составляющими: статистической погрешностью δ5 измерения интенсивности гамма-излучения урана-235; погрешностью δp измерения давления и погрешностью δt измерения температуры:

В выражении (3) составляющая погрешности δ5 является статистической погрешностью измерения интенсивности гамма-излучения с энергией 185,6 кэВ. Эта составляющая погрешности может быть снижена путем увеличения времени измерения.

Величины погрешности δp и погрешности δt характеризуются погрешностью прибора давления и погрешностью датчика температуры.

Предложенный способ испытан на экспериментальной установке. Камера 1 представляла алюминиевый цилиндр диаметром 26 см, высотой 30 см. Детектор 2 NaJ (T1) диаметром 15 толщиной 2 см с фотоумножителем ФЭУ-173. Прибор давления типа МЦ-2 с классом точности 0,5, датчик температуры - платиновый термометр с классом точности 0,2.

Анализатор 6 представляет двухканальный амплитудный анализатор импульсов, первый канал которого настраивался на энергетическую линию 185,6 кэВ, второй канал регистрировал гамма-излучение в более высокоэнергетическом интервале с целью учета фоновой составляющей под пиком 185,6 кэВ. Блоком 5 сбора данных производилась регистрация результатов измерения прибором давления и датчиком температуры. Этим блоком осуществлялось преобразование информации о давлении и температуре к виду, удобному для обработки в вычислительном комплексе 7, в качестве которого применялась ЭВМ. На вычислительный комплекс одновременно поступала информация с выхода анализатора 6.

После напуска в камеру гексафторида урана до требуемого давления камера отсекалась вентилями 8, 9. Включалось измерение интенсивности гамма-излучения, одновременно измерялись и постоянно фиксировались значения температуры и давления. Вычислялись средние значения температуры и давления за весь период измерения интенсивности гамма-излучения урана-235. По формуле (2) рассчитывались значения концентрации урана-235. Величина I корректировалась на величину фоновой составляющей под пиком 185,6 кэВ. Давление в камере изменялось, циклы измерений повторялись на каждой ступени давления. При аналогичных условиях были проведены измерения по известному способу. При этом значение концентрации урана-235 рассчитывалось по формуле (1). Обработка информации ЭВМ при измерении по известному способу производилась с учетом фоновых составляющих величин I, N0, N.

Результаты измерений представлены графически на фиг. 2 и фиг.3, как С5ист.= f(Р), т.е. как зависимость от давления отношения концентрации С5 к истинному значению концентрации Сист.. За истинное значение концентрации принята величина 0,3600±0,0018 мас.%, определенная как средняя величина из трех измерений масс-спектрометром.

На фиг. 2, 3 отрезки, показывающие отклонения, представляют собой суммарную ошибку измерения и масс-спектрометра.

Проведенные измерения показывают, что предложенный способ позволяет производить контроль обогащения гексафторида урана с погрешностью не хуже погрешности измерения по известному способу.

Основным достоинством предлагаемого решения является то, что оно не требует применения внешнего радиоизотопного источника гамма-излучения, что значительно снижает аппаратурные и эксплуатационные затраты установок.

Источники информации
1. Измеритель массовой доли ИМД. Техническое описание и инструкция по эксплуатации eK2.800.011 ТО. Уральский Электрохимический комбинат, г. Новоуральск, Свердловской обл., 1987г. с. 10, 13.

2. Richard B. Strittmatter "AGAG-PHASE UF6 ENRICHMENT MONITOR", Los-Alamos National Laboratory, Nuclear technology, 1982, november, p. 355, (прототип).

Похожие патенты RU2189612C1

название год авторы номер документа
СПОСОБ КОНТРОЛЯ МАССОВОЙ ДОЛИ ИЗОТОПА УРАН-235 В ГАЗОВОЙ ФАЗЕ ГЕКСАФТОРИДА УРАНА И СИСТЕМА ИЗМЕРЕНИЯ ДЛЯ ЕГО РЕАЛИЗАЦИИ 2006
  • Гусев Валерий Павлович
  • Ткачев Сергей Валерьевич
  • Павликов Виктор Анатольевич
  • Артемьев Владимир Аркадьевич
  • Сапрыгин Александр Викторович
  • Овчинников Валерий Юрьевич
  • Залецкий Виктор Эдуардович
RU2330308C1
СПОСОБ КОНТРОЛЯ МАССОВОЙ ДОЛИ ИЗОТОПА УРАН-235 В ГАЗОВОЙ ФАЗЕ ГЕКСАФТОРИДА УРАНА И СИСТЕМА ИЗМЕРЕНИЯ ДЛЯ ЕГО РЕАЛИЗАЦИИ 2006
  • Сапрыгин Александр Викторович
  • Залецкий Виктор Эдуардович
  • Овчинников Валерий Юрьевич
  • Ахтямов Радик Раскатович
RU2325672C1
СПОСОБ КОНТРОЛЯ МАССОВОЙ ДОЛИ ИЗОТОПА УРАН-235 В ГАЗОВОЙ ФАЗЕ ГЕКСАФТОРИДА УРАНА И СИСТЕМА ИЗМЕРЕНИЯ ДЛЯ ЕГО РЕАЛИЗАЦИИ 2003
  • Абрамович А.В.
  • Водолазских В.В.
  • Горохов В.Е.
  • Дорофеев Д.В.
  • Жилейко Ю.В.
  • Зимин Б.М.
  • Илюхин В.М.
  • Мазин В.И.
  • Рощупкин В.И.
  • Сидоренко Н.Н.
  • Торгунаков Ю.Б.
RU2256963C2
СПОСОБ ПЕРЕРАБОТКИ ОРУЖЕЙНОГО ВЫСОКООБОГАЩЕННОГО УРАНА И ЕГО СПЛАВОВ В ТОПЛИВНЫЙ МАТЕРИАЛ ДЛЯ АТОМНЫХ РЕАКТОРОВ 1993
  • Корнилов В.Ф.
  • Кнутарев А.П.
  • Соловьев Г.С.
  • Раев В.В.
  • Климовских В.В.
  • Тютрюмов С.Л.
RU2057377C1
СПОСОБ СТАБИЛИЗАЦИИ ЭНЕРГЕТИЧЕСКОЙ ШКАЛЫ СПЕКТРОМЕТРА И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 1985
  • Артемьев В.А.
  • Гусев В.П.
  • Павликов В.А.
  • Шабунин Л.И.
RU2130624C1
СПОСОБ ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ ХЛОРА В УРАНЕ 2009
  • Кузьмина Наталья Валерьевна
  • Голик Сергей Васильевич
  • Трепачев Сергей Александрович
RU2410681C2
СПОСОБ КОНТРОЛЯ МАССОВОЙ ДОЛИ ИЗОТОПА УРАН-235 В ГАЗОВОЙ ФАЗЕ ГЕКСАФТОРИДА УРАНА 2009
  • Козлов Максим Петрович
  • Бойко Сергей Викторович
  • Воробьев Геннадий Васильевич
  • Канцелярский Владимир Михайлович
  • Сушко Николай Иосифович
  • Водолазских Виктор Васильевич
  • Скугорев Александр Николаевич
  • Кулаков Виктор Григорьевич
RU2396613C1
СПОСОБ ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ ПЕРФТОРУГЛЕРОДНЫХ СОЕДИНЕНИЙ В ГЕКСАФТОРИДЕ УРАНА 1999
  • Джаваев Б.Г.
  • Елистратов О.В.
  • Костюкова Л.В.
RU2154028C1
СПОСОБ И СИСТЕМА КОНТРОЛЯ ОБОГАЩЕНИЯ ГЕКСАФТОРИДА УРАНА 2001
  • Абрамович А.В.
  • Водолазских В.В.
  • Горохов В.Е.
  • Дорофеев Д.В.
  • Жилейко Ю.В.
  • Зимин Б.М.
  • Илюхин В.М.
  • Мазин В.И.
  • Рощупкин В.И.
  • Сидоренко Н.Н.
  • Торгунаков Ю.Б.
RU2185667C1
СПОСОБ ОЧИСТКИ ГЕКСАФТОРИДА УРАНА ОТ ФТОРИДОВ РУТЕНИЯ 2011
  • Мазин Владимир Ильич
  • Мартынов Евгений Витальевич
  • Сигайло Андрей Валерьевич
RU2479490C2

Иллюстрации к изобретению RU 2 189 612 C1

Реферат патента 2002 года СПОСОБ КОНТРОЛЯ ОБОГАЩЕНИЯ ГАЗООБРАЗНОГО ГЕКСАФТОРИДА УРАНА УРАНОМ-235

Использование: в технологических потоках заводов по разделению изотопов урана. Сущность: в способе определение содержания урана-235 производят путем измерения интенсивности гамма-излучения. Определение общего содержания урана в гексафториде урана осуществляется путем одновременного контроля давления и температуры газа в измерительной камере. Технический результат: сокращение аппаратурных затрат, исключение применения внешнего радиоизотопного источника. 3 ил.

Формула изобретения RU 2 189 612 C1

Способ контроля обогащения газообразного гексафторида урана ураном-235, заключающийся в измерении от камеры с гексафторидом урана интенсивности гамма-излучения урана-235, отличающийся тем, что одновременно с измерением интенсивности гамма-излучения урана-235 измеряют давление и температуру гексафторида урана, а о содержании урана-235 в гексафториде урана судят по значению отношения

где С - содержание урана-235 в гексафториде урана;
I - интенсивность гамма-излучения урана-235;
Р - давление гексафторида урана в камере;
t - температура гексафторида урана в камере;
α - градуировочная постоянная.

Документы, цитированные в отчете о поиске Патент 2002 года RU2189612C1

Richard B
Strittmatter, A gas-phase UF enrichment monitor, NUCLEAR TECHNOLOGY, vol
Устройство для охлаждения водою паров жидкостей, кипящих выше воды, в применении к разделению смесей жидкостей при перегонке с дефлегматором 1915
  • Круповес М.О.
SU59A1
СПОСОБ ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ КОМПОНЕНТОВ СМЕСИ АЛЬФА-РАДИОАКТИВНЫХ НУКЛИДОВ В СРЕДАХ 1992
  • Королева В.П.
  • Кураков Н.П.
  • Дубовский Б.Г.
  • Карих К.И.
  • Вайзер В.И.
RU2087008C1
US 4278886 A, 14.07.1981
US 5210419 A, 11.05.1993.

RU 2 189 612 C1

Авторы

Сапрыгин А.В.

Артемьев В.А.

Залецкий В.Э.

Шабунин Л.И.

Гусев В.П.

Даты

2002-09-20Публикация

2000-12-28Подача