Изобретение относится к области неразрущающего контроля физических характеристик конструкционных материалов и может быть использовано для определения одноосных механических напряжений различных конструкций в полевых условиях, например, трубопроводов при перекачке нефти и газа.
Известен ультразвуковой способ измерения внутренних механических напряжений (Российская Федерация, патент 2018815, G 01 N 29/00), заключающийся в том. что в нагруженный исследуемый объект и ненагруженный его аналог или в свободную зону исследуемого объекта, не испытывающую напряжений, вводят импульсы ультразвуковых колебаний (УЗК). принимают прошедшие импульсы, алгебраически суммируют и вычитают их, а по сумме и разности определяют относительную разность скоростей УЗК в напряженном и свободном состояниях, по которой рассчитывают величину механических напряжений. Недостатком данного способа является то, что ненагруженный аналог или свободная зона исследуемого объекта могут иметь механические, а следовательно, и акустические свойства значительно отличающиеся от свойств нагруженной исследуемой зоны, что не позволяет получить удовлетворительную достоверность результатов измерений механических напряжений.
Известен ультразвуковой способ измерения внутренних механических напряжений (Российская Федерация, патент 2057329, G 01 N 29/00), заключающийся в том, что в нагруженный исследуемый объект и ненагруженный его аналог или в свободную зону исследуемого объекта, не испытывающую напряжений, вводят импульсы продольных УЗК, принимают прошедшие импульсы, алгебраически суммируют и вычитают их, а по сумме и разности определяют величину механических напряжений, на тех же участках вводят импульсы УЗК другого типа, например поперечные, принимают прошедшие импульсы, алгебраически суммируют и вычитают их, а величину механических напряжений рассчитывают по специальной формуле. Данное техническое решение как наиболее близкое по технической сущности и достигаемому результату принято за прототип.
Недостатком прототипа является неудовлетворительная достоверность результатов измерений т.к. ненагруженный аналог или свободная зона исследуемого объекта могут иметь механические, а следовательно, и акустические свойства, значительно отличающиеся от свойств нагруженной исследуемой зоны. К тому же на свободной зоне исследуемого объекта в полевых условиях бывает также трудно провести измерения, что повышает трудоемкость и затраты не выполняемые работы.
Задачей предлагаемого изобретения является повышение достоверности измерений одноосных механических напряжений в конструкционных материалах путем получения достоверной информации о начальном (ненапряженном) состоянии в исследуемой зоне, а также уменьшение трудоемкости и затрат на выполнение этих работ.
Поставленная задача решается тем, что в исследуемой зоне объекта возбуждают ультразвуковые импульсы сдвиговых объемных волн, распространяющихся перпендикулярно плоскости, в которой действует напряжение, и поляризованные вдоль и поперек линии действия напряжений, принимают прошедшие импульсы, затем вычисляют величину "сдвиговой" анизотропии по формуле
где
τ⊥ - задержка импульса, поляризованного поперек линии действия напряжений;
- задержка импульса, поляризованного вдоль линии действия напряжений;
при этом в исследуемой зоне объекта на место датчика сдвиговых объемных волн устанавливают излучатель-приемник Релеевских поверхностных волн, возбуждают вдоль и поперек линии действия напряжений ультразвуковые импульсы Релеевских поверхностных волн, принимают прошедшие через контролируемую зону объекта импульсы, вычисляют величину "Релеевской" анизотропии по формуле
где
r⊥ - задержка импульса, распространяющегося поперек линии действия напряжений;
- задержка импульса, распространяющегося вдоль линии действия напряжений,
вычисляют величину сдвиговой анизотропии соответствующей ненагруженному состоянию материала в зоне измерений по формуле
Aso=B0+B•Ar,
где B0 и В - экспериментально полученные на образцах из того же материала коэффициенты,
затем вычисляют действующее механическое напряжение на исследуемом участке по формуле
σ=К•(As-Aso),
где К - коэффициент упруго-акустической связи, определяемый на образцах из того же материала.
Предлагаемое техническое решение поясняется чертежом, где на фиг.1 изображен испытуемый образец, на фиг.2 - датчик сдвиговых объемных волн, на фиг. 3 - датчик Релеевских поверхностных волн.
На нагруженном силой Х образце 1, продольную ось которого ориентируют вдоль или поперек текстуры материала, определяемой технологией его изготовления (например прокаткой), при помощи шлифовальной машинки обрабатывают поверхности исследуемых зон 2, 3 и 4 до чистоты не ниже Ra 12.5. Методами традиционной дефектоскопии, например дефектоскопом УД2-12 (Руководство по эксплуатации ШЮ 2.068.138 РЭ) проводят исследования в выбранных участках на отсутствие дефектов, дающих отраженные импульсы. В случае наличия таких дефектов зоны измерения смещают на 30-40 мм вдоль продольной оси образца и повторяют дефектоскопию. В бездефектной зоне измерения устанавливают датчик поперечных волн, представляющий собой поперечно-поляризованную пластинку 5 из пьезокерамики типа ЦТС-19, на верхней грани которой выполнен контактный слой 6 из серебра или никеля, от которого отходит высокочастотный кабель 7, сверху на контактном слое 6 выполнен демпфер 8 из эпоксидной смолы с наполнителем из вольфрамовых шариков или свинцовой стружки, датчик заключен в металлический корпус 9 с заполнителем 10 из резины или полиуретана. На зашлифованной поверхности исследуемого объекта в зоне контакта с датчиком наносят слой жидкости, в качестве которой применяют эпоксидную смолу типа ЭД 40 без отвердителя. В этом месте к объекту прижимают датчик и одновременно ориентируют его плоскостью поляризации вдоль оси действия напряжений. Проводят измерения задержки между первым и вторым отраженными импульсами, меняют ориентацию датчика на 90o и также измеряют задержки между первым и вторым отраженными импульсами. Вычисляют величину "сдвиговой" анизотропии по формуле
где τ⊥ - задержка импульса, поляризованного поперек линии действия напряжений;
- задержка импульса, поляризованного вдоль линии действия напряжений.
Измерения повторяют 3-5 раз, усредняя получают результаты. В исследуемой зоне объекта на место датчика сдвиговых объемных волн устанавливают излучатель-приемник Релеевских поверхностных волн, представляющий собой двусторонний клин из оргстекла 11, на котором выполнены излучатель Релеевских волн 12, приемник Релеевских волн 13, на боковой грани клина 11 выполнен излучатель-приемник 14 импульсов продольных волн, высокочастотный кабель 15 и корпус 18. При помощи излучателя-приемника импульсов продольных волн 14 учитывают температурные изменения клина из оргстекла 11. Возбуждают вдоль и поперек линии действия напряжений ультразвуковые импульсы Релеевских поверхностных волн, принимают прошедшие через контролируемую зону объекта импульсы, вычисляют величину "Релеевской" анизотропии по формуле
где
r⊥ - задержка импульса, распространяющегося поперек линии действия напряжений;
- задержка импульса, распространяющегося вдоль линии действия напряжений.
Измерения повторяют 3-5 раз, усредняя получают результаты. Вычисляют величину сдвиговой анизотропии, соответствующей ненагруженному состоянию материала в зоне измерений по формуле
Aso=B0+B•Ar,
где B0 и В экспериментально полученные на образцам из того же материала коэффициенты, для стали Х70 В0=0, В=2,4,
затем вычисляют действующее механическое напряжение на исследуемом участке по формуле
σ=К•(As-Aso),
где К - коэффициент упруго-акустической связи, определяемый на образцах из того же материала, для стали Х70 К=-0,6•104.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ИЗМЕРЕНИЯ ОСЕВЫХ МЕХАНИЧЕСКИХ НАПРЯЖЕНИЙ В ТРУБОПРОВОДАХ | 2001 |
|
RU2192634C1 |
КОМПЛЕКСНЫЙ УЛЬТРАЗВУКОВОЙ ДАТЧИК | 2002 |
|
RU2240552C2 |
СПОСОБ ОПРЕДЕЛЕНИЯ АБСОЛЮТНЫХ ОСЕВЫХ НАПРЯЖЕНИЙ В НАГРУЖЕННЫХ БОЛТАХ | 2003 |
|
RU2240553C1 |
Ультразвуковой способ определения разности главных механических напряжений в ортотропных конструкционных материалах | 2023 |
|
RU2810679C1 |
УЛЬТРАЗВУКОВОЙ ДАТЧИК | 2002 |
|
RU2244918C2 |
Способ определения акустической анизотропии слабо анизотропного проката | 2020 |
|
RU2745211C1 |
Способ ультразвукового контроля плоского напряженного состояния акустически анизотропных материалов при переменных температурах | 2021 |
|
RU2761413C1 |
УЛЬТРАЗВУКОВОЙ ДАТЧИК СДВИГОВЫХ ВОЛН | 2007 |
|
RU2365911C2 |
СПОСОБ ОПРЕДЕЛЕНИЯ ВКЛАДА ПЛАСТИЧЕСКОЙ ДЕФОРМАЦИИ В ВЕЛИЧИНУ АКУСТИЧЕСКОЙ АНИЗОТРОПИИ ПРИ ИЗМЕРЕНИИ В ДЕТАЛЯХ МАШИН И ЭЛЕМЕНТАХ КОНСТРУКЦИИ | 2016 |
|
RU2648309C1 |
Способ определения пластической деформации материала | 1988 |
|
SU1663494A1 |
Изобретение относится к области неразрушающего контроля физических характеристик конструкционных материалов и может быть использовано для определения одноосных механических напряжений различных конструкций в полевых условиях, например трубопроводов при перекачке нефти и газа. В исследуемой зоне объекта возбуждают ультразвуковые импульсы сдвиговых объемных волн, распространяющиеся перпендикулярно плоскости, в которой действует напряжение, и поляризованные вдоль и поперек линии действия напряжений, принимают прошедшие импульсы, затем вычисляют величину "сдвиговой" анизотропии, далее в исследуемой зоне объекта на место датчика сдвиговых объемных волн устанавливают излучатель-приемник Релеевских поверхностных волн, возбуждают вдоль и поперек линии действия напряжений ультразвуковые импульсы Релеевских поверхностных волн, принимают прошедшие через контролируемую зону объекта импульсы, вычисляют величину "Релеевской" анизотропии, вычисляют величину сдвиговой анизотропии, соответствующей ненагруженному состоянию материала в зоне измерений, затем вычисляют действующее механическое напряжение на исследуемом участке. Техническим результатом изобретения является повышение достоверности измерений одноосных механических напряжений в конструкционных материалах путем получения достоверной информации о начальном состоянии (начальных напряжениях) в исследуемой зоне, а также уменьшение трудоемкости и затрат на выполнение этих работ. 3 ил.
Способ определения механических напряжений в конструкционных материалах, заключающийся в том, что в исследуемой зоне объекта возбуждают ультразвуковые импульсы сдвиговых объемных волн, распространяющиеся перпендикулярно плоскости, в которой действует напряжение, и поляризованные вдоль и поперек линии действия напряжений, принимают прошедшие импульсы, затем вычисляют величину "сдвиговой" анизотропии по формуле
где τI - задержка импульса, поляризованного поперек линии действия напряжений;
τII - задержка импульса, поляризованного вдоль линии действия напряжений,
отличающийся тем, что в исследуемой зоне объекта на место датчика сдвиговых объемных волн устанавливают излучатель-приемник Релеевских поверхностных волн, возбуждают вдоль и поперек линии действия напряжений ультразвуковые импульсы Релеевских поверхностных волн, принимают прошедшие через контролируемую зону объекта импульсы, вычисляют величину "Релеевской" анизотропии по формуле
где rI - задержка импульса, распространяющегося поперек линии действия напряжений;
rII - задержка импульса, распространяющегося вдоль линии действия напряжений;
вычисляют величину сдвиговой анизотропии, соответствующей ненагруженному состоянию материала в зоне измерений, по формуле
Aso= B0+B•Ar,
где В0 и В - экспериментально полученные на образцах из того же материала коэффициенты,
затем вычисляют действующее механическое напряжение на исследуемом участке по формуле
σ= K•(As-Aso),
где К - коэффициент упругоакустической связи, определяемой на образцах из того же материала.
УЛЬТРАЗВУКОВОЙ СПОСОБ ИЗМЕРЕНИЯ ВНУТРЕННИХ МЕХАНИЧЕСКИХ НАПРЯЖЕНИЙ | 1993 |
|
RU2057329C1 |
УЛЬТРАЗВУКОВОЙ СПОСОБ ИЗМЕРЕНИЯ ВНУТРЕННИХ МЕХАНИЧЕСКИХ НАПРЯЖЕНИЙ | 1992 |
|
RU2018815C1 |
US 4452082 А, 05.06.1984 | |||
ЕР 0612502 В1, 31.08.1994. |
Авторы
Даты
2002-09-27—Публикация
2000-12-25—Подача