СВЕРХПРОВОДНИК ТЕПЛОТЫ Российский патент 2002 года по МПК B32B33/00 C09K5/14 F28F3/00 

Описание патента на изобретение RU2190533C2

Изобретение относится к области передачи теплоты. В частности, данное изобретение касается сверхтеплопроводного материала, который располагается внутри трубопровода для быстрой и эффективной передачи теплоты.

Задача эффективной передачи теплоты из одного места в другое всегда представляла собой серьезную проблему. На практике, в некоторых случаях, например при сохранении полупроводникового чипа от перегрева, требуется быстрая передача и удаление теплоты, в то время как в других случаях, например при рассеивании теплоты от печи, требуется быстрая передача и задерживание теплоты. Как в случае отвода, так и в случае сохранения теплоты, теплопроводность используемого материала ограничивает эффективность передачи теплоты. Кроме того, при необходимости сохранения теплоты, потери теплоты в окружающую среду еще более уменьшают эффективность передачи теплоты.

Как хорошо известно, для передачи теплоты можно использовать, например, тепловую трубу. Действие тепловой трубы основано на принципе передачи теплоты за счет передачи массы находящегося в ней текучего носителя и изменения фазового состояния носителя от жидкости до пара внутри замкнутого трубного контура. В одном конце трубы теплота поглощается при испарении носителя, а в другом конце, при конденсации парообразного носителя, теплота освобождается. Несмотря на то, что тепловая труба имеет более высокий КПД теплопередачи по сравнению с твердыми металлическими проводниками, в ней требуется циркуляция потока жидкого/парообразного носителя, а также имеются ограничения, связанные с соответствующими температурами испарения и конденсации носителя. В результате, осевая скорость передачи теплоты ограничивается также количеством скрытой теплоты фазового перехода от жидкости к пару и скоростью циклически проходящих преобразований между парообразным и жидким состояниями. Кроме того, тепловая труба конвективна сама по себе и через нее тоже происходят тепловые потери, за счет чего уменьшается термический КПД.

Усовершенствованная тепловая труба, которая является особенно полезной для использования в ядерных реакторах, описана Курзвегом (Кurzweg) в патенте США 4590993 на "Устройство передачи теплоты для большого теплоплового потока без передачи массы" (Неаt Тrапsfеr Dеvicе Fоr Тhe Тrаnsроrt Of Lаrgе Соnduсtiоn Flux Without Nеt Маss Тrаnsfеr). Это устройство имеет пару резервуаров для размещения в соответствующих местах с отличающимися температурами, между которыми необходимо передать теплоту. Резервуары соединены некоторым количеством трубок со стенками из теплопроводного материала. Теплоноситель, предпочтительно жидкий металл наподобие ртути, жидких лития или натрия, заполняет резервуары и трубки. Поршнем или мембраной внутри одного из резервуаров создается колебательное осевое движение жидкого металла так, чтобы проходимый жидкостью путь был меньше, чем длина трубки. В результате этого движения жидкий металл, находящийся внутри данного резервуара, поочередно то выталкивается из него и движется вдоль осей трубок в одном направлении, то фактически всасывается обратно в данный резервуар так, что теплоноситель движется в противоположном направлении внутри трубок. Таким образом, носитель совершает колебательные движения внутри трубок вдоль их осей с заданной частотой и данным приливно-отливным смещением или амплитудой. При такой схеме, при условии, что носитель осциллирует с достаточно высокой частотой и достаточно большим приливно-отливным смещением, вдоль осей трубок из более горячего резервуара переходит большое количество теплоты и передается на стенки трубок. В то время как носитель возвращается в более горячий резервуар, более холодный носитель из противоположного резервуара перемещается в трубки, в результате чего теплота передается от стенок трубок этому более холодному носителю. После некоторого числа колебаний, теплота перемещается из более горячего резервуара в противоположный резервуар. Однако, как и в случае с тепловой трубой, эффективность этого устройства ограничена теплопроводностью материалов, из которых сделаны резервуары и трубки, а также потерями теплоты в атмосферу.

Известно также, что для отвода излишка теплоты, образовавшейся в результате механических или электрических операций, можно использовать радиаторы и теплоотводы. Обычно, теплопередающий носитель проходит через генерирующий теплоту источник и поглощает некоторое количество теплоты, произведенной этим источником. Затем носитель передается в трубы, снабженные пластинами для теплообмена, в которых часть теплоты из теплоносителя поглощается и излучается. После этого, охлажденный носитель возвращается обратно в производящий теплоту источник Для того чтобы исходящая от теплоотвода энергия рассеивалась в большем объеме воздуха, обычно используется вентилятор, прогоняющий воздух сквозь пластины теплоотвода. В этом типе устройства эффективность передачи теплоты также ограничивается теплопроводностью материалов, из которых выполнены радиатор или теплоотвод.

Диккинсон (Dickinson) в патенте США 5542471 описывает теплопередающий элемент, имеющий теплопроводящие волокна (Неаt Тrаnsfеr Еlemеnt Наving Тhеrmaаlly Соnductive Fibers), который устраняет потребность в теплоносителях. Это устройство имеет соосные теплопроводящие волокна, простирающиеся между двумя субстанциями, между которыми требуется передать теплоту, и предназначенные для максимизации передачи теплоты. Волокна состоят из графитовых волокон на матрице из эпоксидной смолы, графитовых волокон, отвержденных из композиционного материала с органической матрицей и имеющих графитовые волокна на матрице из органической смолы, графитовых волокон на алюминиевой матрице, графитовых волокон на медной матрице, или на матрице из керамического композиционного материала.

В патенте Китайской Народной Республики 89108521.1 описано теплопередающее устройство на основе проводника из неорганического материала (Inоrganic Меdium Тhеrmal Соnductive Dеviсе). Это теплопередающее устройство значительно улучшило способность материалов к теплопередаче по сравнению с их обычным состоянием. Эксперименты показали, что это устройство способно передавать теплоту по герметичной металлической трубке с низким вакуумом внутри со скоростью 5000 м/с. На внутренней стенке трубки находится накладываемое за три приема покрытие, имеющее оптимальную общую толщину от 0,012 до 0,013 мм. Доля стронция от общего веса покрытия составляет 1,25%, доля бериллия - 1,38%, доля натрия - 1,95%. Это теплопередающее устройство не содержит генерирующий теплоту порошок, а также не предотвращает потери теплоты в атмосферу, ни передает теплоту сверхпроводящим образом, как это имеет место в представленном изобретении.

Общепризнанно, что когда два вещества с отличающимися температурами соединены друг с другом, температура более теплого вещества уменьшается, а температура более холодного вещества увеличивается. Во время прохождения теплоты по теплопроводу от теплого конца к более холодному концу некоторое количество полезной теплоты теряется из-за теплопроводящей способности материала теплопровода в процессе нагревания холодных частей теплопровода, а также в результате тепловых потерь в атмосферу. В соответствии с представленным изобретением и рассмотренными проблемами, которые продолжают существовать в данной области, одним из объектов данного изобретения является сверхтеплопроводный материал, который является экологически чистым, быстро проводит теплоту и сохраняет теплоту с высокой эффективностью. Более того, представленное изобретение не подразумевает производства со слишком сложным технологическим оборудованием.

Еще одним объектом данного изобретения является устройство, которое проводит теплоту с эффективностью сохранения теплоты, приближающейся к 100%.

Объектом изобретения является также метод денатурирования родия и карбоната радия.

Другим объектом данного изобретения является способ создания устройства, которое передает теплоту от источника теплоты из одной точки в другую фактически без потери теплоты.

Еще одним объектом представленного изобретения является также теплоотвод, в котором используется сверхтеплопроводный материал, способный быстро и эффективно рассеять теплоту, произведенную каким-либо объектом.

За счет применения сверхтеплопроводного материала, который является относительно недорогим в изготовлении, простым по дизайну, исполнению и при использовании, представленное изобретение достигает вышеупомянутых и других целей, а также позволяет преодолеть недостатки прототипов.

Теплопроводящий материал наносится на трубопровод в три основных слоя. Первые два слоя приготовляются из растворов, в которые погружаются внутренние стенки трубопровода. Первоначально во внутреннюю станку трубопровода на глубину от 0,008 мм до 0,012 мм абсорбируется первый слой, который главным образом состоит из ионных форм различных комбинаций натрия, бериллия, металла наподобие марганца или алюминия, кальция, бора и радикала дихромата. Далее на верхней части первого слоя, фактически формируя пленку толщиной от 0,008 мм до 0,012 мм, на внутренней стенке трубопровода осаждается второй слой, главным образом состоящий из ионных форм различных комбинаций кобальта, марганца, бериллия, стронция, родня, меди, Р-титана, калия, бора, кальция, металла наподобие алюминия и радикала дихромата. В последнюю очередь по внутренней поверхности трубопровода равномерно распределяется третий слой, который представляет из себя порошок, включающий различные комбинации оксида родия, дихромата калия, оксида радия, дигидрата дихромата натрия, дихромата серебра, монокристаллического кремния, оксида бериллия, хромата стронция, оксида бора, Р-титана и дихромата металла наподобие дихромата магния или дихромата алюминия. Эти три слоя могут быть нанесены на трубопровод и затем подвергнуты тепловой поляризации, в результате чего будет сформировано сверхтеплопроводное устройство, которое передает теплоту без потери теплоты в цепи, или, в комплекте с парой пластин, имеющих полость малого по сравнению с площадью их поверхности размера, может образовать теплоотвод, способный очень быстро рассеивать теплоту, произведенную каким-либо источником.

Следует понимать, что фразеология и терминология, используемые здесь, используются только для описания и не могут быть расценены как ограничение. Кроме того, квалифицированный в данной области специалист легко поймет, что концепция, на которой основано описанное здесь изобретение, может быть легко использована в качестве основы для проектирования других структур, методов и систем, позволяющих достичь тех целей, на которые направлено представленное изобретение. Таким образом, важно рассматривать формулу представленного изобретения как включающую в себя такие эквивалентные конструкции, поскольку они не отклоняются от духа и не выходят из контекста представленного изобретения.

Другие объекты, преимущества и возможности данного изобретения станут понятными из следующего сопровождаемого чертежами описания, в котором иллюстрируется наилучший вариант изобретения.

Представленное изобретение будет легче понять, а также станут более очевидными его объекты, как указанные, так и не указанные выше, при рассмотрении нижеследующего подробного описания. В этом описании имеются ссылки на следующие чертежи:
Фиг. 1 - общий вид сверхтеплопроводного устройства, выполненного в соответствии с представленным изобретением.

Фиг. 2 - сечение устройства, изображенного на фиг. 1.

Фиг. 3 - общий вид пробки, используемой в устройстве, изображенном на фиг. 1.

Фиг. 4 - общий вид теплоотвода, выполненного в соответствии с представленным изобретением.

Фиг. 5 - вид сбоку теплоотвода, изображенного на фиг. 4.

Фиг. 6 - сечение теплоотвода, изображенного на фиг. 4.

Фиг. 7 - пример тест-прибора для тестирования сверхтеплопроводного устройства.

Фиг. 8 - данные, полученные в результате Теста 1 наилучшего варианта представленного изобретения.

Фиг. 9 - данные, полученные в результате Теста 2 наилучшего варианта представленного изобретения.

Фиг. 10 - данные, полученные в результате Теста 3 наилучшего варианта представленного изобретения.

Фиг. 11 - данные, полученные в результате Теста 4 наилучшего варианта представленного изобретения.

Для более полного понимания характера и объектов представленного изобретения следует обращаться к нижеследующему подробному описанию, сопровождаемому чертежами. На всех чертежах соответствующие части обозначаются одинаковыми позициями. Обратимся сначала к фиг. 1 и 2. Сверхтеплопроводное устройство 2 состоит из несущего элемента наподобие трубопровода 4, содержащего сверхтеплопроводный материал 6, который может быть помещен внутри полости 8 трубопровода 4, из какого бы материала не был выполнен трубопровод 4. В то время как трубопровод 4, показанный на фиг. 1, имеет цилиндрическую форму, представленное изобретение подразумевает трубопроводы разных форм и размеров. В результате способности по теплопередаче материала 6 вкупе с трубопроводом 4 значительно улучшаются без каких-либо последующих тепловых потерь. Правильно расположенный внутри трубопровода 4 материал 6 фактически катализируется теплотой и сам становится генератором теплоты. Материал 6 активизируется при температуре приблизительно 38oС и может функционировать до максимальной температуры приблизительно 1730oС. Полагается, хоть и без полной уверенности, что способность производить теплоту у материала 6 напрямую связана с потерей массы материалом 6 после активации. В силу того, что материал 6 способен незамедлительно пересылать теплоту через трубопровод 4 от источника теплоты (не показан), трубопровод 4 может быть оставлен незащищенным и функционировать в среде с исходной температурой гораздо выше температуры плавления необработанного материала, из которого выполнен трубопровод 4.

Дополнительно полагается, что в течение начальных стадий активации материала 6, материал 6 реагирует эндотермически. Таким образом, материал 6 может немедленно поглощать доступную теплоту, исходящую от источника теплоты, и сразу после этого незамедлительно передавать теплоту по трубопроводу 4. Если кубический объем полости 8 мал по сравнению с площадью внешней поверхности 10 трубопровода 4, как это показано на фиг. 4-6, материал 6 поглощает теплоту, образуя теплоотвод 12, который немедленно удаляет теплоту от генерирующего теплоту источника. Излучение теплоты напрямую связано с теплоемкостью, скоростью проведения теплоты и удельной теплопроводностью. Этим, другими словами, определяется скорость, с которой данный объем (количество) теплоты может быть перемещен в каждой единице объема.

Если трубопровод 4 или несущий элемент имеет полость малого размера по сравнению с площадью внешней поверхности 10, несущий элемент является более приспособленным к распространению теплоты через внешнюю поверхность 10. На практике, в случаях, когда температура генерирующего теплоту источника не превышает 38oС, температуры активации материала 6, теплота немедленно поглощается и рассеивается материалом 6. В случаях, когда температура генерирующего теплоту источника превышает 38oС, теплоотвод 12 не теряет своей эффективности за счет того, что материал 6 в состоянии быстро передавать теплоту к внешней поверхности 14 теплоотвода 12, с которой она эффективно рассеется в атмосферу за счет теплового излучения.

Материал 6 накладывается в три основных слоя, первые два из которых готовятся из растворов. Внутренняя поверхность 16 трубопровода 4 или внутренняя поверхность 18 теплоотвода 12 последовательно подвергается действию этих растворов. Сначала во внутреннюю поверхность 16 трубопровода 4 или внутреннюю поверхность 18 теплоотвода 12 абсорбируется первый слой 20. Далее на поверхности первого слоя 20 образуется второй слой 22 и фактически формирует пленку на внутренней поверхности 16 трубопровода 4 или внутренней поверхности 18 теплоотвода 12. После этого третий слой 24, представляющий то себя порошок, равномерно распределяется по внутренней поверхности 16 трубопровода 4 или внутренней поверхности 18 теплоотвода 12. Несмотря на то, что при нижеследующем обсуждении материала 6 речь будет вестись о трубопроводе 4, в теплоотводе 12 материал 6 может быть нанесен аналогичным образом.

Первый слой 20 является антикоррозийным слоем, предотвращающим протравливание внутренней поверхности 16 трубопровода 4, и, теоретически, вызывает переориентацию атомной структуры материала трубопровода 4 таким образом, чтобы теплота могла быть более легко поглощена. Еще одной функцией первого слоя 20 является предотвращение окисления внутренней поверхности 16 трубопровода 4. Например, сплавы на железной основе легко окисляются под действием молекул воды, содержащихся в воздухе. Окисление внутренней поверхности 16 трубопровода 4 вызывает коррозию, а также создает тепловое сопротивление. В результате этого во время перемещения тепловой энергии внутри трубопровода 4 повышается тепловая нагрузка, вызывая накапливание тепловой энергии внутри трубопровода 4, что уменьшает срок службы материала 6.

Второй, активный, слой 22 предотвращает генерацию элементарных водорода и кислорода, ограничивая таким образом окисление материала трубопровода 4 (или несущего элемента) атомами кислорода. Теоретически, второй слой 22 проводит теплоту по внутренней поверхности 16 трубопровода 4 приблизительно таким же образом, каким электропровод проводят электричество. Эксперименты показали, что материал 6 может проводить теплоту со скоростью 15000 м/с, независимо от коэффициента теплопроводности материала, из которого изготовлен трубопровод. Второй слой 22 также помогает увеличить молекулярные колебания и трение, связанное с третьим слоем 24, с тем, чтобы образовался путь для передачи теплоты.

Третий слой 24 из-за его внешнего вида и цвета обычно называют слоем "черного порошка". Считается, что третий слой 24 генерирует теплоту, если материал 6 находится при минимальной температуре активации в 38oС. При активации материала 6 атомы третьего слоя 24, взаимодействуя с первым слоем 20 и вторым слоем 22, начинают осциллировать. Считается, что при увеличении температуры источника теплоты, увеличивается частота этих колебаний. Предполагается, что когда температура активации достигает 200oС, частота колебаний достигает 230 миллионов раз в секунду, а когда температура активации превышает 350oС, частота может даже достигать 280 миллионов раз в секунду. Теоретически, чем выше температура активации, тем выше частота колебаний. Следовательно, есть основания полагать, что чем выше нагрузка, тем выше эффективность работы трубопровода. Во время процесса передачи теплоты не происходит ни изменения фазы, ни передачи массы материала 6. Эксперименты показали, что стальной трубопровод 4 с правильно наложенным в нем материалом 6 имеет удельную теплопроводность, примерно в 20000 раз превышающую удельную теплопроводность серебра, а в лабораторных условиях его удельная теплопроводность может в 30000 раз превышать удельную теплопроводность серебра.

В процессе использования, после активация, материал 6 теряет массу (эти потери вызваны преобразованием массы в энергию). Таким образом, материал 6 имеет длительный, но ограниченный срок службы. Тесты показали, что после 110000 часов непрерывного использования как количество материала 6, так и частота вибрации молекул остаются такими же, как и сразу после активации. Однако после 120000 часов непрерывного использования, количество (масса) материала 6 начинает уменьшаться со скоростью приблизительно 0,5% каждые 32 часа, при более значительном, примерно на 6%, уменьшении частоты вибрации молекул. После приблизительно 123200 часов непрерывного использования материал 6 потерял эффективность. Полагается, что старение вызывается главным образом распадом, или преобразованием массы в энергию, третьего слоя 24. Ожидается, что более низкие рабочие температуры замедляют распад третьего слоя 24. Было определено, что первый слой 20 и второй слой 22 расходуются со скоростью приблизительно 0,001 мм за 10000 часов использования.

Для создания первого слоя 20 приготовляется раствор элементов, входящих в этот слой, после чего этот раствор наносится на внутреннюю поверхность трубопровода 16. Приготовление образца раствора первого слоя разбивается на следующие шаги, которые желательно производить в том порядке, в котором они перечислены ниже:
(а) размещение 100 мл дистиллированной воды в резервуаре из инертного материала наподобие стекла или, что более предпочтительно, керамики;
(б) растворение и размешивание в воде от 2,0 до 5,0 г пероксида натрия;
(в) растворение и размешивание в растворе, полученном на шаге (б), от 0,0 до 0,5 г оксида натрия;
(г) растворение и размешивание в растворе, полученном на шаге (в), от 0,0 до 0,5 г оксида бериллия;
(д) растворение и размешивание в растворе, полученном на шаге (г), от 0,3 до 2,0 г дихромата металла наподобие дихромата алюминия или, что более предпочтительно, дихромата магния;
(е) растворение и размешивание в растворе, полученном на шаге (д), от 0,0 до 3,5 г дихромата кальция; и
(ж) растворение и размешивание в растворе, полученном на шаге (е), от 1,0 до 3,0 г оксида бора для формирования раствора первого слоя.

Предпочтительно, чтобы шаги от (а) до (ж) выполнялись в вышеуказанном порядке при температуре от 0oС до 30oС, желательно от 5oС до 8oС, и относительной влажности не больше чем 40%. Шаги, связанные с добавлением оксида бериллия и дихромата металла, можно без ущерба для процедуры поменять местами так, чтобы дихромат металла добавлялся к раствору первого слоя перед добавлением оксида бериллия. Если в материале 6 содержится полуторный оксид марганца, оксид родия или оксид радия, то либо пероксид натрия, либо оксид натрия можно не добавлять, однако коэффициент теплопередачи полученного в результате материала 6 понизится, а срок службы материала 6 уменьшится приблизительно на 1 год. Что касается оставшихся компонентов раствора первого слоя, то, с учетом вышеуказанных исключений, каждый компонент должен быть добавлен в представленном порядке. Если компоненты раствора первого слоя будут смешиваться в порядке, не согласующемся с указанным, раствор может получиться нестабильным, что может привести к разрушительной реакции.

Прежде чем приступить к изготовлению раствора второго слоя 22 и составлению компонентов для третьего слоя 24, следует подвергнуть денатурированию родий и карбонат радия. Чтобы денатурировать 100 г порошка родия, следует смешать 2 г порошка чистого свинца с порошком родия в контейнере и поместить этот контейнер с порошками родия и свинца в печь при температуре от 850oС до 900oС по крайней мере на 4 часа, в результате чего образуется оксид родия. Затем следует отделить оксид родия от свинца. Для денатурирования 100 г порошка карбоната радия следует смешать его с 11 г порошка чистого свинца в контейнере и поместить этот контейнер в печь при температуре от 750oС до 800oС по крайней мере на восемь часов, в результате чего образуется оксид радия. Во время экспериментов при денатурации использовался платиновый контейнер. Материал, из которого выполнен контейнер, должен быть инертен по отношению к родию, оксиду родия, карбонату радия, оксиду радия и свинцу. Желательно, чтобы используемый при денатурации свинец был бы 99,9%-ной чистоты. В дальнейшем он может быть повторно использован в процессе денатурации. Проводившиеся проверки материала 6 в состоянии покоя и в активном состоянии с помощью индивидуального РDМ дозиметра показали, что этот материал не излучает никакого различимого на естественном фоне типа радиации.

В материале 6 используется один из изотопов титана. В некоторых странах этот изотоп известен как титан В-типа, а в Соединенных Штатах Америки его называют Р-титаном.

Второй слой 22 получается из раствора, который наносится на внутреннюю поверхность трубопровода 16 поверх первого слоя 20. Подобно раствору первого слоя, образец раствора второго слоя может быть получен после выполнения следующих шагов, которые желательно проводить в том порядке, в котором они приведены ниже:
(а) размещение 100 мл дважды дистиллированной воды в резервуаре из инертного материала наподобие стекла или, что более предпочтительно, керамики;
(б) растворение и размешивание в дважды дистиллированной воде от 0,2 до 0,5 г оксида кобальта;
(в) растворение и размешивание в растворе, полученном на шаге (б), от 0,0 до 0,5 г полуторного оксида марганца;
(г) растворение и размешивание в растворе, полученном на шаге (в), от 0,0 до 0,01 г оксида бериллия;
(д) растворение и размешивание в растворе, полученном па шаге (г), от 0,0 до 0,5 г хромата стронция;
(е) растворение и размешивание в растворе, полученном на шаге (д), от 0,0 до 0,5 г карбоната стронция;
(ж) растворение и размешивание в растворе, полученном на шаге (е), от 0,0 до 0,2 г оксида родия;
(з) растворение и размешивание в растворе, полученном на шаге (ж), от 0,0 до 0,8 г оксида двухвалентной меда;
(и) растворение и размешивание в растворе, полученном на шаге (з), от 0,0 до 0,6 г Р-титана;
(к) растворение и размешивание в растворе, полученном на шаге (и), от 1,0 до 1,2 г дихромата калия;
(л) растворение и размешивание в растворе, полученном на шаге (к), от 0,0 до 1,0 г оксида бора;
(м) растворение и размешивание в растворе, полученном на шаге (л), от 0,0 до 1,0 г дихромата кальция; и
(н) растворение и размешивание в растворе, полученном на шаге (м), от 0,0 до 2,0 г дихромата алюминия или, что более предпочтительно, дихромата магния для формирования раствора второго слоя.

Предпочтительно, чтобы удельная электропроводность дважды дистиллированной воды была близка к 0. Чем выше удельная электропроводность, тем больше вредное воздействие статического электричества на материал 6 и, в результате, тем меньше КПД теплопередачи. Шаги от (а) до (н) желательно выполнять при температуре от 0oС до 30oС и относительной влажности, не превышающей 40%. Если материал 6 содержит оксид родия или оксид радия, количество полуторного оксида марганца может быть уменьшено или даже доведено до нуля; однако срок службы материала 6 в этом случае уменьшится, а КПД теплопередачи упадет приблизительно на 0,2%. Вообще говоря, Р-титан может быть добавлен к раствору второго слоя на любом из перечисленных выше шагов, за исключением добавления в дважды дистиллированную воду на шаге (б) и в качестве последнего компонента на шаге (н). Добавление Р-титана в дважды дистиллированную воду на шаге (б) или в качестве последнего компонента раствора может вызывать неустойчивость раствора второго слоя. Шаги, на которых добавляется полуторный оксид марганца и оксид бериллия, можно поменять местами, то есть добавлять к раствору для второго слоя оксид бериллия до добавления полуторного оксида марганца. Точно также можно поменять местами шаги, на которых добавляются дихромат калия и дихромат кальция, то есть добавлять дихромат кальция в раствор второго слоя перед добавлением дихромата калия. Если компоненты раствора второго слоя будут смешиваться в порядке, не согласующемся, с учетом отмеченных исключений, с вышеуказанным порядком, раствор может получиться нестабильным, что может привести к разрушительной реакции.

Прежде чем готовить третий слой 24, кремний следует обработать магнитным полем. Монокристаллический кремниевый порошок, желательно имеющий чистоту 99,999%, помещается в немагнитный контейнер и располагается внутри магнитного резонатора по крайней мере на 37 мин, предпочтительно на время от 40 до 45 мин. Во время экспериментирования использовался магнитный резонатор на 0,5 кВт, 220 В и 50 Гц. Если используемый кремний имеет чистоту ниже 99,999%, количество кремния, необходимого в третьем слое 24, увеличивается. Магнитный резонатор используется для того, чтобы повысить уровень атомных электронов кремния, что, в свою очередь, приводит к увеличению скорости передачи теплоты материалом 6.

Приготовление образца порошка третьего слоя 24 состоит из следующих шагов, которые желательно проводить в приведенном ниже порядке:
(а) размещение от 0.0 до 1,75 г денатурированного оксида родия в контейнере из инертного материала, наподобие стекла или, что более предпочтительно, из керамики;
(б) смешивание с оксидом родия от 0,3 до 2,6 г дихромата натрия;
(в) смешивание со смесью, полученной на шаге (б), от 0,0 до 0,8 г дихромата калия;
(г) смешивание со смесью, полученной на шаге (в), от 0,0 до 3,1 г денатурированного оксида радия;
(д) смешивание со смесью, полученной на шаге (г), от 0,1 до 0,4 г дихромата серебра;
(е) смешивание со смесью, полученной на шаге (д), от 0,2 до 0,9 г порошка монокристаллического кремния, обработанного магнитным полем;
(ж) смешивание со смесью, полученной на шаге (е), от 0,0 до 0,01 г оксида бериллия;
(з) смешивание со смесью, полученной на шаге (ж), от 0,0 до 0,1 г хромата стронция;
(и) смешивание со смесью, полученной на шаге (з), от 0,0 до 0,1 г оксида бора;
(к) смешивание со смесью, полученной на шаге (и), от 0,0 до 0,1 г пероксида натрия;
(л) смешивание со смесью, полученной на шаге (к), от 0,0 до 1,25 г Р-титана; и
(м) смешивание со смесью, полученной на шаге (л), от 0,0 до 0,2 г дихромата алюминия, или, что более предпочтительно, дихромата магния для формирования порошка третьего слоя.

Желательно, чтобы порошок третьего слоя 24 смешивался при температуре ниже чем приблизительно 25oС. Смешивание при более низких температурах улучшает КПД теплопроводности материала 6. Кроме того, относительная влажность должна быть ниже 40%. Наиболее предпочтительно, чтобы относительная влажность была между 30% и 35%. Вообще говоря, оксид радия или Р-титан могут быть добавлены в порошок третьего слоя 24 на любом шаге, перечисленном выше, за исключением того, что ни одно из этих веществ не может быть добавлено в порошок в качестве первого или последнего компонента. Добавление оксида радия или Р-титана в порошок в качестве первого или последнего компонента может вызывать неустойчивость материала 6 и привести к разрушительной реакции. Шаги, связанные с добавлением дихромата калия и дихромата серебра, можно поменять местами, чтобы дихромат серебра был добавлен к порошку третьего слоя 24 перед добавлением дихромата калия. Аналогично можно поменять местами шаги, на которых добавляются хромат стронция и оксид бериллия, чтобы оксид бериллия добавлялся к порошку третьего слоя 24 до добавления хромата стронция. Если компоненты порошка третьего слоя будут смешиваться в порядке, не согласующемся, с учетом отмеченных исключений, с вышеуказанным порядком, материал 6 может получиться нестабильным, что может привести к разрушительной реакции.

Порошок третьего слоя 24 может храниться в течение длительного времени. Чтобы предотвратить ухудшение свойств в результате воздействия света и влажности, порошок третьего слоя 24 следует хранить в темном, герметичном контейнере, сделанном из инертного материала, предпочтительно из стекла. Внутри контейнера также может быть помещен влагопоглощающий материал, при условии, что влагопоглощающий материал инертен по отношению к порошку для третьего слоя 24 и не смешивается с ним.

Подготовив растворы первого слоя 20 и второго слоя 22, а также порошок третьего слоя 24, можно приступать к изготовлению сверхтеплопроводного устройства 2. Трубопровод 4 может быть изготовлен из ряда как металлических, так и неметаллических материалов; но, в любом случае, он должен иметь очень мало окисленную, желательно вообще неокисленную, внутреннюю поверхность 16. Рекомендуется, чтобы трубопровод 4, особенно если трубопровод 4 изготовлен из металла, был чистым, сухим и свободным от каких бы то ни было окисей или оксатов. Этого можно добиться с помощью обычных известных способов обработки, например, пескоструйной обработкой, промывкой слабым кислотным или слабым щелочным растворами. Все материалы, использовавшиеся для очистки н обработки трубопровода 4, должны быть полностью удалены, а внутренняя поверхность 16 трубопровода 4 должна быть также осушена перед нанесением 6 на трубопровод 4. Кроме того, толщина стенки трубопровода 4 должна выбираться из расчета скорости износа по крайней мере в 0,1 мм в год. Этот износ вызывается колебанием молекул третьего слоя 24. Для стали толщина стенки должна быть по крайней мере 3 мм. Очевидно, что в случае с более мягкими материалами толщина должна быть еще более увеличена. Трубопровод 4 может иметь значительную длину. На самом деле, было обнаружено, что КПД трубопровода 4 увеличивается с увеличением его длины.

Изготовление образца сверхтеплопроводного устройства 2 можно разложить на следующие шаги:
(а) размещение раствора первого слоя в контейнере для раствора первого слоя;
(б) погружение трубопровода 4, имеющего полость 8, в раствор первого слоя так, чтобы раствор первого слоя заполнял полость 8, при температуре от 0oС до 30oС, по крайней мере на 8 шагов так, чтобы раствор первого слоя мог проникнуть в стенку трубопровода 4 на глубину от 0,008 мм до 0,012 мм, причем желательно, чтобы трубопровод 4 был размещен не в горизонтальном положении, с нижним концом 26, направленным вниз в растворе первого слоя;
(в) просушка трубопровода 4 при естественных условиях окружающей среды для формирования первого слоя 20 внутри полости 8;
(г) размещение раствора второго слоя в контейнере для раствора второго слоя;
(д) погружение трубопровода 4 с нанесенным первым слоем 20 в раствор второго слоя так, чтобы раствор второго слоя заполнял полость 8, при температуре от 55oС до 65oС, предпочтительно при 60oС, по крайней мере на 4 часа, причем желательно, чтобы трубопровод 4 был размещен не в горизонтальном положении, с нижним концом 26, направленным вниз в растворе второго слоя;
(е) просушка трубопровода 4 при естественных условиях окружающей среды для формирования внутри полости 8 пленки второго слоя 22 толщиной от 0,008 мм до 0,012 мм;
(ж) приварка торцевой заглушки 28 на конце трубопровода 8, противоположном нижнему концу 26, с помощью какого-либо прецизионного метода сварки, предпочтительно с помощью дуговой сварки в среде гелия или аргона;
(з) приварка входной заглушки 30, имеющей отверстие 32 диаметром от 2,4 мм до 3,5 мм, предпочтительно 3,0 мм, на нижнем конце 26, желательно тем же методом, что и на шаге (ж);
(и) нагревание нижнего конца 26 до температуры, не превышающей 120oС, желательно приблизительно до 40oС;
(к) введение порошка третьего слоя 24 через отверстие 32 в количестве по крайней мере одного кубического метра на 400000 кубических метров объема полости 8;
(л) вставка в отверстие 32 пробки 34, желательно твердой и имеющей коническую форму, как это показано на фиг.3;
(м) нагревание нижнего конца 26 до температуры от 80oС до 125oС;
(н) удаление пробки 34 из отверстия 32 на время, не превышающее приблизительно 3 с, предпочтительно приблизительно 2 с, с последующей вставкой пробки 34 в отверстие 32; и
(о) заваривание пробки 34 в отверстие 32, предпочтительно тем же методом сварки, который был использован на шаге (ж), для формирования сверхтеплопроводного устройства 2.

Если температура нижнего конца 26 на шаге (и) превышает 60oС, следует позволить нижнему концу 26 охладиться по крайней мере до 60oС, прежде чем вводить порошок третьего слоя 24 в полость 8. В результате вышеуказанных шагов, нижний конец 26 становится поляризованным по отношению к теплоте. Другими словами, нижний конец 26 поляризован так, чтобы получать теплоту от источника теплоты и передавать теплоту от себя далее.

Цель удаления заглушки 34 из отверстия 32 на шаге (н) состоит в том, чтобы выпустить воздух и молекулы воды из полости 8 трубопровода 4 в окружающую среду. После удаления заглушки 34 из отверстия 32 наблюдался выход из отверстия 32 газа синего цвета. Однако, если до того, как заглушка 34 вставлена в отверстие 32, наблюдается свечение голубого цвета, излучающееся из отверстия 32, то это означает, что порошок третьего своя 24 улетучился в атмосферу, и шаги от (к) до (н) должны быть повторены. Если шаг (к) может быть выполнен при отсутствии влажности в условиях низкого вакуума, шаги (м) и (н) можно пропустить, однако это не рекомендуется.

Полуторный оксид марганца, оксид родия и оксид радия нужны не при всех применениях материала 6. Эти три компонента используются в материале 6, если сверхтеплопроводное устройство 2 эксплуатируется в паровой среде с высоким давлением, а трубопровод 4 выполнен из высокоуглеродистой стали. В этом специальном случае, высокое давление определяется как давление в 0,92 миллиона Паскалей и выше. Полуторный оксид марганца, оксид родия и оксид радия не являются необходимыми и могут не добавляться в материал 6, если сверхтеплопроводное устройство 2 эксплуатируется не в паровой среде с высоком давлением, даже если трубопровод 4 выполнен из высокоуглеродистой стали. Кроме того, если полуторный оксид марганца, оксид родия и оксид радия не использованы а материале 6, порошок третьего слоя 24 следует закладывать в количестве 1 м3 порошка третьего слоя на 200000 м3 объема полости 8.

Как отмечено выше, в теплоотводе 12 используется сверхтеплопроводный материал 6. Производство образца теплоотвода 12 состоит из следующих шагов:
(а) размещение раствора первого слоя в контейнере для раствора первого слоя;
(б) погружение первой пластины 36 и второй пластины 38 в раствор первого слоя так, чтобы раствор первого слоя покрывал по крайней мере одну сторону каждой из этих пластин, 36 и 38, при температуре от 0oС до 30oС по крайней мере на 8 часов так, чтобы раствор первого слоя мог проникнуть в покрытую раствором первого слоя сторону 40 на глубину от 0,008 до 0,012 мм, причем первая пластина 36 и вторая пластина 38 имеют сопрягающиеся грани 42, чтобы при совмещении первой пластины 36 и второй пластины 38 образовывалась полость малого объема по сравнению с площадью поверхностей первой пластины 36 и второй пластины 38, и, кроме того, по крайней мере в одной из пластан 36 и 38 имеется отверстие 44 размером от 2,4 мм до 3,5 мм, предпочтительно 3,0 мм;
(в) просушка первой пластины 36 и второй пластины 38 при естественных условиях окружающей среды для формирования первого слоя 20 на покрытых первым слоем сторонах 40 первой пластины 36 и второй пластины 38;
(г) размещение раствора второго слоя 6 в контейнере для раствора второго слоя;
(д) погружение первой пластины 36 и второй пластины 38 в раствор второго слоя так, чтобы раствор второго слоя контактировал с первым слоем 20, при температуре от 55oС до 65oС, предпочтительно при 60oС, по крайней мере в течение 4 часов;
(е) просушка первой пластины 36 и второй пластины 38 при естественных условиях окружающей среды для формирования на первом слое 20 пленки второго слоя 22 толщиной от 0,008 мм до 0,012 мм;
(ж) приварка первой пластаны 36 ко второй пластине 38 вдоль сопрягающихся граней 42 с помощью какого-либо прецизионного метода сварки, предпочтительно с помощью дуговой сварки в среде гелия или аргона, так, чтобы покрытые первым слоем стороны 40 смотрели друг на друга;
(з) введение порошка третьего слоя 24 в полость 8 через отверстие 44 в количестве по крайней мере 1 м3 на 400000 м3 объема этой полости и
(и) заварка отверстия 44, предпочтительно тем же методом, который был использован на шаге (ж), для формирования теплоотвода 12.

Теплоотвод 12 можно изготавливать тем же самым способом, как и сверхтеплопроводное устройство 2, таким образом, теплоотвод 12 может быть подвергнут тепловой поляризации, хоть это и не является необходимым. Также, шаги, связанные со сваркой, при производстве сверхтеплопроводного устройства 2 и теплоотвода 12, можно выполнять с использованием клеев, адгезивов и/или эпоксидных смол, предпочтительно теплостойких клеев, адгезивов и эпоксидных смол. Кроме того, всю сварку следует проводить на глубину двух третей толщины трубопровода 4, торцевой заглушки 28, входной заглушки 30, первой пластины 36 или второй пластины 38. После сварки, следует выполнить испытание на герметичность, наподобие гелиево-вакуумного испытания на герметичность.

Все материалы, из которых выполнены трубопровод 4, торцевая заглушка 28, входная заглушка 30 и пробка 34 сверхтеплопроводного устройства 2 или первой пластины 36 и второй пластины 38 теплоотвода 12 должны быть совместимы друг с другом. Это предотвращает проблемы, особенно разломы материала, связанные с отличающимися величинами расширения/сокращения различных материалов, используемых в комбинации, и коррозию, связанную с анодными реакциями. Выбранный материал также должен иметь способность противостоять и быть совместимым с внешней средой, в которой эксплуатируются сверхтеплопроводное устройство 2 или теплоотвод 12. Например, в эксплуатации сверхтеплопроводного устройства 2 в кислой среде материал должен быть устойчив к действию присутствующей кислоты.

Изобретение будет лучше понято при обращении к нижеследующим иллюстративным примерам. Что касается приведенного выше описания, то следует понимать, что оптимальные соотношения размеров частей изобретения, включая изменения в размере, материалах, формах, конфигурациях, назначении и способах оперирования, сборки и использования, считаются вполне ясными и очевидными для квалифицированного специалиста, и все эквивалентные описанным выше соотношения рассматриваются как попадающие в сферу представленного изобретения.

Сверхтеплопроводный материал 6 может также проводить передачу холодной температуры, если любой конец трубопровода 4 подвергнуть действию холодного источника. Через трубопровод 4 были успешно переданы низкие температуры, когда один его конец контактировал с жидким азотом, имеющим температуру -195oС.

В следующих примерах описываются различные составы первого слоя 20, второго слоя 22 и третьего слоя 24. Эти примеры также должны оказаться полезными при изготовлении сверхтеплопроводного устройства 2 или теплоотвода 12. Компоненты в соответствующие слои 20, 22, 24 желательно добавлять в указанных количествах, в порядке их перечисления и согласно с соответствующими шагами, описанными выше.

Пример 1
Для изготовления первого слоя 20 следует в 100 мл дистиллированной воды добавить 5,0 г пероксида натрия, 0,5 г оксида натрия, 2,0 г дихромата магния или дихромата алюминия, 2,5 г дихромата кальция и 3,0 г оксида бора.

Для изготовления второго слоя 22 следует в 100 мл дважды дистиллированной воды добавить 0,5 г оксида кобальта, 0,5 г сесквиоксида марганца, 0,5 г карбоната стронция, 0,2 г оксида родия, 0,8 г оксида двухвалентной меди, 0,6 г β-титана и 1,2 г дихромата калия.

Для изготовления порошка третьего слоя 24 следует смешать 1,75 г оксида родия, 1,25 г β-титана, 3,1 г оксида радия, 2,6 г дихромата натрия, 0,4 г дихромата серебра и 0,9 г порошка монокристаллического кремния.

Пример 2
Для изготовления первого слоя 20 следует в 100 мл дистиллированной воды добавить 5,0 г пероксида натрия, 0,5 г оксида бериллия, 2,0 г дихромата магния, 2,0 г дихромата кальция и 3,0 г оксида бора.

Для изготовления второго слоя 22 следует в 100 мл дважды дистиллированной воды добавить 0,5 г оксида кобальта, 0,5 г хромата стронция, 0,8 г оксида двухвалентной меди, 0,6 г β-титана и 1,2 г дихромата калия.

Для изготовления порошка третьего слоя 24 следует смешать 1,6 г дихромата натрия, 0,8 г дихромата калия, 0,4 г дихромата серебра и 0,9 г порошка монокристаллического кремния.

Пример 3
Для изготовления первого слоя 20 следует в 100 мл дистиллированной воды добавить 5,0 г пероксида натрия, 0,5 г оксида бериллия, 2,0 г дихромата магния, 3,5 г дихромата кальция и 3,0 г оксида бора.

Для изготовления второго слоя 22 следует в 100 мл дважды дистиллированной воды добавить 0,5 г оксида кобальта, 0,5 г хромата стронция, 0,8 г оксида двухвалентной меди, 0,6 г β-титана и 1,2 г дихромата калия.

Для изготовления порошка третьего слоя 24 следует смешать 1,6 г дихромата натрия, 0,8 г дихромата калия, 0,6 г дихромата серебра и 0,9 г порошка монокристаллического кремния.

Пример 4
Для изготовления первого слоя 20 следует в 100 мл дистиллированной воды добавить 2,0 г пероксида натрия, 0,3 г оксида бериллия, 2,0 г дихромата магния и 1,0 г оксида бора.

Для изготовления второго слоя 22 следует в 100 мл дважды дистиллированной воды добавить 0,5 г оксида кобальта, 0,5 г хромата стронция, 0,4 г β-титана и 1,0 г дихромата калия.

Для изготовления порошка третьего слоя 24 следует смешать 0,5 г дихромата натрия, 0,8 г дихромата калия, 0,1 г дихромата серебра, 0,3 г порошка монокристаллического кремния, 0,01 г оксида бериллия, 0,1 г хромата стронция, 0,1 г оксида бора и 0,1 г пероксида натрия.

Пример 5
Для изготовления первого слоя 20 следует в 100 мл дистиллированной воды добавить 2,0 г пероксида натрия, 0,3 г оксида бериллия, 2,0 г дихромата магния и 1,0 г оксида бора.

Для изготовления второго слоя 22 следует в 100 мл дважды дистиллированной воды добавить 0,3 г оксида кобальта, 0,3 г хромата стронция, 1,0 г дихромата калия и 1,0 г дихромата кальция.

Для изготовления порошка третьего слоя 24 следует смешать 0,3 г дихромата натрия, 0,1 г дихромата серебра, 0,8 г дихромата калия, 0,2 г порошка монокристаллического кремния, 0,01 г оксида бериллия, 0,1 г хромата стронция, 0,1 г оксида бора, 0,2 г β-титана и 0,1 г пероксида натрия.

Пример 6
Для изготовления первого слоя 20 следует в 100 мл дистиллированной воды добавить 2,0 г пероксида натрия, 0,3 г дихромата магния, 1,0 г оксида бора и 1,0 г дихромата кальция.

Для изготовления второго слоя 22 следует в 100 мл дважды дистиллированной воды добавить 0,3 г оксида кобальта, 0,01 г оксида бериллия, 1,0 г дихромата калия, 1,0 г оксида бора и 2,0 г дихромата магния.

Для изготовления порошка третьего слоя 24 следует смешать 0,3 г дихромата натрия, 0,1 г дихромата серебра, 0,8 г дихромата калия, 0,2 г порошка монокристаллического кремния, 0,1 г хромата стронция, 0,01 г оксида бериллия, 0,1 г оксида бора, 0,1 г пероксида натрия, 0,2 г β-титана и 0,2 г дихромата магния.

Пример 7
Для изготовления первого слоя 20 следует в 100 мл дистиллированной воды добавить 2,0 г пероксида натрия, 0,3 г дихромата магния и 1,0 г оксида бора.

Для изготовления второго слоя 22 следует в 100 мл дважды дистиллированной воды добавить 0,2 г оксида кобальта, 1,0 г дихромата кальция, 1,0 г дихромата калия, 0,5 г оксида бора, 1,0 г дихромата магния и 0,01 г оксида бериллия.

Для изготовления порошка третьего слоя 24 следует смешать 0,3 г дихромата натрия, 0,05 г дихромата серебра, 0,8 г дихромата калия, 0,2 г порошка монокристаллического кремния, 0,1 г хромата стронция, 0,01 г оксида бериллия, 0,1 г оксида бора, 0,1 г пероксида натрия, 0,2 г β-титана и 0,2 г дихромата магния.

Эксперименты
1. Введение
При добавлении соответствующего количества, порядка нескольких миллиграмм, порошка третьего слоя 24, представляющего собой неорганический сверхтеплопроводный материал, в трубу наподобие трубопровода 4 или в выемку между плоскими деталями наподобие пластин 36, 38, возникает сверхтеплопроводное устройство 2. Например, добавление порошка третьего слоя 24 в полость 8 трубопровода 4 или между пластинами 36, 38 и герметизация полости 8 с последующим нагреванием и удалением остаточных воды и воздуха позволит создать сверхтеплопроводное устройство 2. Результаты тестов доказывают, что третий слой 24 является сверхтеплопроводным материалом и что теплопроводное устройство, выполненное с использованием третьего слоя 24, является сверхтеплопроводной трубой.

Тот факт, что обычная тепловая труба имеет практически такой же внешний вид, как и сверхтеплопроводная труба, может вызвать некоторые недоразумения. Поэтому представляется необходимым дать краткое описание сходств и различий этих двух устройств. В обычной тепловой трубе для переноса теплоты от более горячего конца трубы к более холодному используется метод, основанный на испарении жидкостей при поглощении большого количества теплоты и охлаждении паров при испускании теплоты. Осевая скорость передачи теплоты тепловой трубы зависит от величины теплоты парообразования жидкости и скорости циклического преобразования носителя от жидкости к пару и обратно. Кроме того, осевая скорость передачи теплоты тепловой трубы ограничивается видом и количеством носителя, а также температурами и давлениями, при которых функционирует тепловая труба (они не могут быть слишком высокими). Представленное сверхтеплопроводное устройство 2 выполнено из сверхтеплопроводного материала, осевая передача теплоты которого осуществляется за счет движения с высокими скоростями молекул сверхтеплопроводного материала после его нагрева и активации. Скорость передачи теплоты у представленного сверхтеплопроводного устройства 2 намного выше, чем у каких бы то ни было известных металлических пластин или обычных тепловых труб такого же размера, в то время как внутреннее давление в нем намного ниже, чем в любой известной тепловой трубе при такой же температуре. Верхний допустимый предел температуры в представленном сверхтеплопроводном устройстве 2 выше верхнего допустимого предела температуры для материала, из которого выполнен трубопровод 4.

Представленное сверхтеплопроводное устройство 2 может улучшить проведение большинства, если не всех, видов передачи теплоты, особенно в плане уровня использования теплоты. Представленное сверхтеплопроводное устройство 2 также применимо при разработке и использовании солнечной энергии и геотермальной энергии, а также для повторного использования теплоты с низким уровнем энергии.

2. Принцип и методика тестирования
Скорость передачи теплоты металлической пластины зависит от ее теплопроводности, градиента температуры и площади поверхности сечения, перпендикулярного градиенту температуры. Металлы имеют более высокую теплопроводность по сравнению с неметаллическими телами. Самую высокую теплопроводность среди металлов имеет серебро, она равна приблизительно 415 Вт/(м•К).

Представленные сверхтеплопроводные устройства 2 представляют собой полностью новую разработку, поэтому не имеется никакого опыта по установлению и проверке их свойств. Вполне логично и научно будет полагать, что измерение их эффективной или кажущейся теплопроводности, а также осевого и радиального потоков теплоты позволит выявить их свойства. Однако, это не может изменить тот факт, что не существует никакого опыта и методов по измерению удельных теплопроводностей сверхтеплопроводных устройств.

Для проверки свойств представленных сверхтеплопроводных устройств 2 использовался усовершенствованный метод Форбеза (Fоrbes Меthod), при котором сверхтеплопроводная труба принимается за полубесконечный стержень. Будем считать, что температура контрольной поверхности стержня равна Т0 К, температура сечения на расстоянии х метров от контрольной поверхности равна Т К, температура жидкости (воды), расположенной рядом с поверхностью стержня и совершающей с ним теплообмен, равна Тt К, коэффициент теплопроводности стержня равен k Вт/(м•К), коэффициент конвективной теплопередачи поверхности равен h Вт/(м2•К), периметр поперечного сечения стержня равен Р метров, а площадь поперечного сечения стержня равна f м2. Тогда основное дифференциальное уравнение теплопередачи будет иметь следующий вид;
d2T/dx2-(h-p)/(k•f)-(T-T) = 0. (1)
Данное дифференциальное уравнение не является однородным. Положим θ = T-T. m2=hp/kf. Тогда уравнение (1) преобразуется в однородное уравнение вида:
d2θ/dx2-m2θ = 0. (2)
Для цилиндрических объектов, m2=4h/(kd0), где d0 - это диаметр цилиндрического объекта.

Предположим θ = θ0 при х=0, (3)
θ = 0 при x = ∞. (4)
Решением, удовлетворяющим вышеуказанным грамотным условиям, будет
θ = θ(-mx)0

. (5)
При граничных условиях, задаваемых уравнениями (6) и (7)
θ = θ0 при х=0, (6)
dθ/dx = 0 при x = L, (7)
другим решением уравнения (2) будет

Некоторые условия эксперимента могут быть аналогичны условиям, определяемым уравнениями (6) и (7), а поскольку значение выражения внутри фигурных скобок {} близко к 1, в этом случае имеем решение
θ/θ0 = Exp(-mx), (9)
которое также является правильным.

Осевая скорость теплопередачи через контрольную поверхность равна
Qx = -kf(dθ/dx)x=0. (10)
Из уравнения (5) имеем
(dθ/dx)x=0 = -θ0m Exp(-mx)|x=0 = -θ0m. (11)
Используя уравнение (6), имеем
Q0 = k•f•m•θ0. (12)
Скорость теплового потока от стержня в воду равна
Q0 = V•ρ•Cp•(To-Ti) ватт, (13)
где V - объемный расход воды (м3/с);
ρ - плотность воды (кг/м3);
Ср - теплоемкость воды (Дж/(кг•К));
Т0 - температура воды на выходе (К);
Тi - температура воды на входе (К);
Qi = d0πLhΔtln, (14)
где L - длина стержня (м);
d0 - внешний диаметр стержня (м);
h - коэффициент конвекционной теплопередачи (Вт/(м2К));
Δtln = (θ0L)/ln(θ0L).
После измерения вышеуказанных значений могут быть вычислены эффективная теплопроводность и тепловой поток сверхтеплопроводной трубы.

3. Устройство для тестирования
Основанное на вышеописанных математической модели и принципе тестирования устройство для тестирования, как показано на фиг.7, состоит из термопроводящей тепловой трубы 102, трубы для охлаждающей воды 104, термопар 106, манометра 108, камеры нагрева водяным паром 110, коллектора сконденсировавшейся воды 112 и выпускного вентиля 114.

4. Результаты тестирования
В качестве источника теплоты для активации сверхтеплопроводного материала 24 внутри устройства 2 во многих отношениях лучше всего использовать насыщенный водяной пар. Насыщенный водяной пар имеет высший коэффициент теплопередачи при конденсации и, хроме того, входит в непосредственный контакт с нагреваемой поверхностью устройства 2, что исключает тепловое сопротивление при контакте. Для того чтобы контролировать температуру нагрева, достаточно контролировать давление насыщенного водяного пара, что позволяет поддерживать стабильный тепловой поток, действующий на сверхтеплопроводное устройство 2. После установления расхода и входной температуры охлаждающей воды, система тестирования приходит в состояние устойчивого равновесия. Значения всех измеряемых физических величин стабильны и хорошо повторяемы.

В следующей таблице приведены четыре репрезентативных группы замеров, а на фиг. 8-11 эти результаты показаны графически. Кривые на фиг. 8-11 представляют собой распределение температур вдоль тестируемой трубы, выполненной в соответствии с изобретением, в направлении от нагреваемого конца к дальнему концу. Верхняя кривая соответствует температуре на поверхности трубы, а нижняя - температуре воды в непосредственной близости от трубы. Термин "относительный коэффициент" обозначает коэффициент, связанный со степенью нагрева в камере нагрева водяным паром.

Кривая распределения температуры, эффективная теплопроводность, коэффициент конвективного теплообмена на поверхности охлаждаемой части трубы, а также скорость теплопередачи были получены при различных расходах охлаждающей воды. Несмотря на то, что эти значения имеют некоторый разброс, они показывают, что тепловая труба является сверхтеплопроводной.

Изменение расхода охлаждающей воды вызывает изменение распределения температуры, но не вызывает изменения скорости теплопередачи. Это означает, что скорость теплопередачи в нагревающемся участке достигла верхнего предела. То, что теплопроводная область нагревающегося участка была выполнена недостаточно большой, есть следствие недооценки теплопроводных способностей тепловой трубы. Изменения в распределении температуры приводят к изменениям значения и знака коэффициента m в уравнении взаимосвязи. Изменение коэффициента конвективного теплообмена означает, что изменилась также и эффективная теплопроводность. Эти изменения подтверждают сверхтеплопроводность трубы. Если m имеет знак "плюс", выходная температура охлаждающей воды приближается к температуре в основании тепловой трубы (в точке х=0). Обычный теплообменник может достигнуть такого высокого КПД теплопередачи только при наличии противотока. При увеличении расхода охлаждающей воды, выходная температура охлаждающей воды приближается к температуре другого конца (х=L). Обычный теплообменник может достигнуть такого высокого КПД теплопередачи только в том случае, если его теплопроводная зона бесконечно велика.

Итак, все вышесказанное, включая примеры, рассматривается только как иллюстрация принципов изобретения. Не выходя из рамок контекста и духа представленного изобретения, могут быть созданы различные его модификации, поэтому необходимо понимать, что рамки изобретения ограничиваются только известным уровнем техники и нижеследующей формулой изобретения.

Похожие патенты RU2190533C2

название год авторы номер документа
КАТАЛИТИЧЕСКАЯ КОМПОЗИЦИЯ ДЛЯ СЕЛЕКТИВНОСТИ ПРЕВРАЩЕНИЯ АЛКАНОВ В НЕНАСЫЩЕННЫЕ КАРБОНОВЫЕ КИСЛОТЫ, СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИИ И СПОСОБ ПРИМЕНЕНИЯ КОМПОЗИЦИИ 2005
  • Хазин Полетт Н.
  • Эллис Пол Э. Мл.
RU2342991C2
ГАЗОРАЗДЕЛИТЕЛЬНОЕ УСТРОЙСТВО 2007
  • Рууд Джеймс Энтони
  • Бауман Майкл Джон
  • Сарати Калья Виджая
  • Манохаран Мохан
  • Ку Энтони Юй-Чун
  • Рамасвами Видья
  • Мэйленфант Патрик Роланд Люсьен
RU2446855C2
СОСТАВ КОМПОЗИТА ДЛЯ НАНЕСЕНИЯ МЕТАЛЛОКОНВЕРСИОННОГО ПОКРЫТИЯ НА МЕТАЛЛИЧЕСКУЮ ПОВЕРХНОСТЬ 1994
  • Тимохин Константин Николаевич
RU2094529C1
Способ получения композиционного металл-дисперсного покрытия, дисперсная система для осаждения композиционного металл-дисперсного покрытия и способ ее получения 2020
  • Есаулов Сергей Константинович
  • Есаулова Целина Вацлавовна
RU2746863C1
Способ получения композиционного металл-дисперсного покрытия, дисперсная система для осаждения композиционного металл-дисперсного покрытия и способ ее получения 2020
  • Есаулов Сергей Константинович
  • Кукушкин Сергей Сергеевич
  • Светлов Геннадий Валентинович
  • Есаулова Целина Вацлавовна
RU2746861C1
ГИБРИДНЫЕ СИСТЕМЫ-НОСИТЕЛИ 2008
  • Делюка Джеймс Джозеф
  • Такер Гэри Д. Ii
RU2491311C2
БЕСХРОМАТНАЯ ПОДГОТОВИТЕЛЬНАЯ ГРУНТОВКА 2015
  • Лабуш Дидье
  • Мэйе Мари-Ноэль
  • Абрами Сиаманто
RU2664103C2
СПОСОБ ИЗВЛЕЧЕНИЯ ВАНАДИЯ И ХРОМА ИЗ ВАНАДИЕВО-ХРОМОВЫХ ШЛАКОВ 2018
  • Фу, Зиби
  • Цзянь, Лин
  • Ли, Минь
  • Гао, Гуаньцзинь
RU2688072C1
СПОСОБ ПОЛУЧЕНИЯ СПЛАВОВ ЩЕЛОЧНЫХ МЕТАЛЛОВ И ИХ ПРИМЕНЕНИЕ 2010
  • Зепеур,Штефан
  • Френцер,Геральд
  • Хюфнер,Стефан
  • Мюллер,Франк
RU2528919C2
НЕОРГАНИЧЕСКИЙ ПИГМЕНТ НА ОСНОВЕ СУЛЬФИДА МЕТАЛЛА И СПОСОБ ЕГО ПОЛУЧЕНИЯ 1997
  • Камарзин А.А.
  • Соколов В.В.
  • Трушникова Л.Н.
  • Савельева М.В.
RU2108355C1

Иллюстрации к изобретению RU 2 190 533 C2

Реферат патента 2002 года СВЕРХПРОВОДНИК ТЕПЛОТЫ

Сверхтеплопроводящий материал состоит из трех основных слоев, первый слой состоит из различных комбинаций металлов и радикала дихромата; второй слой формируется поверх первого слоя и состоит из различных комбинаций металлов, таких как кобальт, марганец, бериллий, стронций и радикал дихромата; третий слой формируется поверх второго слоя и состоит из различных комбинаций оксидов металлов, дихроматов, монокристаллического кремния, хромата стронция и β-титана. Эти три слоя могут быть наложены на трубопроводе и подвергнуты тепловой поляризации с тем, чтобы сформировать сверхпроводящее теплоту устройство, передающее теплоту без потери теплоты в цепи, или могут быть наложены на пару пластин, имеющих полость малого объема по сравнению с площадью поверхности с тем, чтобы сформировать теплоотвод, который в состоянии очень быстро рассеивать теплоту от источника теплоты. Изобретение позволит получить недорогой в изготовлении, простой по дизайну, исполнению и использованию материал и устройство из него с высокой эффективностью сохранения теплоты и ее передачи. 4 с. и 57 з.п. ф-лы, 11 ил., 1 табл.

Формула изобретения RU 2 190 533 C2

1. Сверхтеплопроводный материал, включающий первый слой, состоящий по крайней мере из одного соединения, выбранного из группы, в которую входят пероксид натрия, оксид натрия, оксид бериллия, полуторный оксид марганца, дихромат алюминия, дихромат кальция, оксид бора, радикал дихромата, а также комбинации этих веществ; второй слой, состоящий по крайней мере из одного соединения, выбранного из группы, в которую входят оксид кобальта, полуторный оксид марганца, оксид бериллия, хромат стронция, карбонат стронция, оксид родия, оксид двухвалентной меди, Р-титан, дихромат калия, оксид бора, дихромат кальция, дихромат магния, дихромат алюминия, радикал дихромата, а также комбинации этих веществ; и третий слой, состоящий по крайней мере из одного соединения, выбранного из группы, в которую входят денатурированный оксид родия, дихромат калия, денатурированный оксид радия, дихромат натрия, дихромат серебра, монокристаллический кремний, оксид бериллия, хромат стронция, оксид бора, пероксид натрия, β-титан, дихромат металла, а также комбинации этих веществ. 2. Сверхтеплопроводный материал по п.1, в котором первый слой состоит из оксида бериллия, дихромата металла, дихромата кальция и оксида бора. 3. Сверхтеплопроводный материал по п. 2, в котором первый слой также включает соединение натрия, выбранное из группы, состоящей из пероксида натрия и оксида натрия. 4. Сверхтеплопроводный материал по п.3, в котором дихромат металла выбран из группы, состоящей из дихромата алюминия и дихромата магния. 5. Сверхтеплопроводный материал по п.1, в котором второй слой состоит из оксида кобальта, полуторного оксида марганца, оксида бериллия, хромата стронция, карбоната стронция, оксида двухвалентной меди, титана, дихромата калия, оксида бора, дихромата кальция и дихромата металла. 6. Сверхтеплопроводный материал по п.5, в котором дихромат металла выбран из группы, состоящей из дихромата алюминия и дихромата магния, а в качестве титана использован β-титан. 7. Сверхтеплопроводный материал по п.1, в котором второй слой состоит из оксида кобальта, оксида бериллия, хромата стронция, карбоната стронция, оксида двухвалентной меди, титана, дихромата калия, оксида бора, дихромата кальция, дихромата металла и как минимум одного оксида, выбранного из группы, состоящей из оксида родия и оксида радия. 8. Сверхтеплопроводный материал по п.7, в котором дихромат металла выбран из группы, состоящей из дихромата алюминия и дихромата марганца, а в качестве титана использован β-титан. 9. Сверхтеплопроводный материал по п. 8, в котором второй слой также включает полуторный оксид марганца. 10. Сверхтеплопроводный материал по п.1, в котором третий слой представляет собой порошок, включающий по крайней мере один денатурированный оксид из группы, состоящей из денатурированного оксида родия, денатурированного оксида родия и их комбинаций; по крайней мере один дихромат Группы IA из набора, состоящего из дихромата натрия, дихромата калия и их комбинаций; дихромат серебра, монокристаллический кремний, оксид бериллия, хромат стронция, оксид бора, пероксид натрия, титан и дихромат металла. 11. Сверхтеплопроводный материал по п.10, в котором дихромат металла выбран из группы, состоящей из дихромата алюминия и дихромата магния, а в качестве титана использован β-титан. 12. Сверхтеплопроводный материал по п.10, в котором монокристаллический кремний предварительно обработан магнитным полем. 13. Сверхтеплопроводный материал по п.2, в котором первый слой имеет толщину приблизительно от 0,008 до 0,012 мм. 14. Сверхтеплопроводный материал по п.5, в котором второй слой нанесен поверх первого слоя. 15. Сверхтеплопроводный материал по п.14, в котором второй слой формирует пленку поверх первого слоя. 16. Сверхтеплопроводный материал по п.5, в котором второй слой имеет толщину приблизительно от 0,008 до 0,012 мм. 17. Сверхтеплопроводный материал по п.1, в котором третий слой представляет собой порошок. 18. Сверхтеплопроводный материал по п.10, в котором третий слой наложен поверх второго слоя. 19. Сверхтеплопроводный материал по п.18, в котором третий слой равномерно распределен по второму слою. 20. Сверхтеплопроводное устройство, включающее расположенные на каком-либо основании первый, второй и третий слои, в котором первый слой имеет толщину приблизительно от 0,008 до 0,012 мм и состоит по крайней мере из одного соединения, выбранного из группы, в которую входят пероксид натрия, оксид натрия, оксид бериллия, полуторный оксид марганца, дихромат алюминия, дихромат кальция, оксид бора, радикал дихромата, а также комбинации этих веществ; второй слой имеет толщину приблизительно от 0,008 до 0,012 мм и состоит по крайней мере из одного соединения, выбранного из группы, в которую входят оксид кобальта, полуторный оксид марганца, оксид бериллия, хромат стронция, карбонат стронция, оксид родия, оксид двухвалентной меди, β-титан, дихромат калия, оксид бора, дихромат кальция, дихромат магния, дихромат алюминия, радикал дихромата, а также комбинации этих веществ; и третий слой состоит по крайней мере из одного соединения, выбранного из группы, в которую входят денатурированный оксид родия, дихромат калия, денатурированный оксид радия, дихромат натрия, дихромат серебра, монокристаллический кремний, оксид бериллия, хромат стронция, оксид бора, пероксид натрия, β-титан, дихромат металла, а также комбинации этих веществ. 21. Сверхтеплопроводное устройство по п.20, в котором первый слой состоит из оксида бериллия, дихромата металла, дихромата кальция и оксида бора. 22. Сверхтеплопроводное устройство по п.21, в котором первый слой также включает по крайней мере одно соединение натрия, выбранное из группы, состоящей из пероксида натрия и оксида натрия; в котором дихромат металла выбран из группы, состоящей из дихромата алюминия и дихромата магния; в котором в качестве титана использован Р-титан. 23. Сверхтеплопроводное устройство по п.20, в котором второй слой состоит из оксида кобальта, полуторного оксида марганца, оксида бериллия, хромата стронция, карбоната стронция, оксида двухвалентной меди, β-титана, дихромата калия, оксида бора, дихромата кальция и дихромата металла. 24. Сверхтеплопроводное устройство по п.23, в котором дихромат металла выбран из группы, состоящей из дихромата алюминия и дихромата магния. 25. Сверхтеплопроводное устройство по п.20, в котором второй слой состоит из оксида кобальта, оксида бериллия, хромата стронция, карбоната стронция, оксида двухвалентной меди, титана, дихромата калия, оксида бора, дихромата кальция, дихромата металла и как минимум одного оксида, выбранного из группы, состоящей из оксида родия и оксида радия. 26. Сверхтеплопроводное устройство по п.25, в котором дихромат металла выбран из группы, состоящей из дихромата алюминия и дихромата магния, а в качестве титана использован β-титан. 27. Сверхтеплопроводное устройство по п.26, в котором второй слой также включает полуторный оксид марганца. 28. Сверхтеплопроводное устройство по п.20, в котором третий слой представляет собой порошок, включающий по крайней мере один денатурированный оксид из группы, состоящей из денатурированного оксида родия, денатурированного оксида радия и их комбинаций; по крайней мере один дихромат Группы IA из набора, состоящего из дихромата натрия, дихромата калия и их комбинаций; дихромат серебра, монокристаллический кремний, оксид бериллия, хромат стронция, оксид бора, пероксид натрия, титан и дихромат металла. 29. Сверхтеплопроводное устройство по п.28, в котором дихромат металла выбран из группы, состоящей из дихромата алюминия и дихромата магния; в качестве титана использован β-титан; монокристаллический кремний предварительно обработан магнитным полем. 30. Сверхтеплопроводное устройство по п.28, в котором третий слой наложен поверх второго слоя. 31. Сверхтеплопроводное устройство по п.30, в котором третий слой равномерно распределен по второму слою. 32. Сверхтеплопроводное устройство по п.20, в котором основание имеет по крайней мере одну поверхность; при этом первый слой проник в эту по крайней мере одну поверхность основания. 33. Сверхтеплопроводное устройство по п.32, в котором основание представляет собой герметизированный трубопровод, имеющий внутреннюю и внешнюю поверхности; при этом первый, второй и третий слои наложены на внутреннюю поверхность. 34. Сверхтеплопроводное устройство по п.33, в котором трубопровод подвергнут тепловой поляризации. 35. Сверхтеплопроводное устройство по п.20, в котором основание представляет собой пару пластин, каждая из которых имеет ближнюю поверхность и дальнюю поверхность, причем их ближние поверхности смотрят друг на друга, а дальние поверхности смотрят друг от друга, при этом пластины располагаются на некотором расстоянии друг от друга с тем, чтобы между ними образовалась полость. 36. Сверхтеплопроводное устройство по п.35, в котором первый, второй и третий слои наложены на ближнюю поверхность каждой пластины. 37. Сверхтеплопроводное устройство по п.36, в котором объем полости мал по сравнению с площадью поверхности пластин. 38. Способ создания сверхтеплопроводного материала, имеющего три слоя, включающий следующие шаги: (а) подготовка раствора первого слоя; (б) нанесение раствора первого слоя на поверхность основания для формирования первого слоя; (в) подготовка раствора второго слоя; (г) нанесение раствора второго слоя на первый слой для формирования второго слоя поверх первого слоя; (д) подготовка порошка третьего слоя; и (е) нанесение порошка третьего слоя на второй слой с тем, чтобы сформировать третий слой поверх второго слоя и, таким образом, сформировать трехслойный сверхтеплопроводный материал. 39. Способ создания сверхтеплопроводного материала по п.38, в котором раствор первого слоя состоит из воды, оксида бериллия, дихромата металла, дихромата кальция и оксида бора. 40. Способ создания сверхтеплопроводного материала по п.39, в котором раствор первого слоя также включает по крайней мере одно соединение натрия, выбранное из группы, состоящей из пероксида натрия и оксида натрия. 41. Способ создания сверхтеплопроводного материала по п.40, в котором дихромат металла выбирают из группы, состоящей из дихромата алюминия и дихромата магния, а в качестве титана используют β-титан. 42. Способ создания сверхтеплопроводного материала по п.38, в котором второй слой приготавливают из ионного раствора, состоящего из воды, оксида кобальта, полуторного оксида марганца, оксида бериллия, хромата стронция, карбоната стронция, оксида двухвалентной меди, титана, дихромата калия, оксида бора, дихромата кальция и дихромата металла. 43. Способ создания сверхтеплопроводного материала по п.42, в котором дихромат металла выбирают из группы, состоящей из дихромата алюминия и дихромата магния, а в качестве титана используют β-титан. 44. Способ создания сверхтеплопроводного материала по п.38, в котором второй слой приготавливают из раствора второго слоя, состоящего из воды, оксида кобальта, оксида бериллия, хромата стронция, карбоната стронция, оксида двухвалентной меди, титана, дихромата калия, оксида бора, дихромата кальция, дихромата металла и как минимум одного оксида, выбранного из группы, состоящей из оксида родия и оксида радия. 45. Способ создания сверхтеплопроводного материала по п.44, в котором дихромат металла выбирают из группы, состоящей из дихромата алюминия и дихромата магния, а в качестве титана используют β-титан. 46. Способ создания сверхтеплопроводного материала по п.45, в котором раствор второго слоя также включает полуторный оксид марганца. 47. Способ создания сверхтеплопроводного материала по п.38, в котором третий слой представляет собой порошок, приготовляемый из смеси, включающей по крайней мере один денатурированный оксид из группы, состоящей из денатурированного оксида родия, денатурированного оксида радия и их комбинаций; по крайней мере один дихромат Группы IA из набора, состоящего из дихромата натрия, дихромата калия и их комбинаций; дихромат серебра, монокристаллический кремний, оксид бериллия, хромат стронция, оксид бора, пероксид натрия, титан и дихромат металла. 48. Способ создания сверхтеплопроводного материала по п.47, в котором дихромат металла выбирают из группы, состоящей из дихромата алюминия и дихромата магния, а в качестве титана используют β-титан. 49. Способ создания сверхтеплопроводного материала по п.38, в котором раствор первого слоя, раствор второго слоя и порошок третьего слоя приготавливают при температуре приблизительно от 0 до 30oС и при относительной влажности не более 40%. 50. Способ создания сверхтеплопроводного материала по п.49, в котором раствор первого слоя приготавливают при температуре приблизительно от 5 до 8oС. 51. Способ создания сверхтеплопроводного материала по п.49, в котором порошок третьего слоя приготавливают при относительной влажности приблизительно от 30 до 35%. 52. Способ создания сверхтеплопроводного материала по п.38, в котором процесс производства раствора первого слоя состоит из следующих шагов: (а) размещение 100 частей по весу дистиллированной воды в резервуаре из инертного материала; (б) растворение и размешивание в воде от 2,0 до 5,0 части по весу пероксида натрия; (в) растворение и размешивание в растворе, полученном на шаге (б), от 0,0 до 0,5 части по весу оксида натрия; (г) растворение и размешивание в растворе, полученном на шаге (в), от 0,0 до 0,5 части по весу оксида бериллия; (д) растворение и размешивание в растворе, полученном на шаге (г), от 0,3 до 2,0 части по весу дихромата металла из группы, состоящей из дихромата алюминия и дихромата магния; (е) растворение и размешивание в растворе, полученном на шаге (д), от 0,0 до 3,5 части по весу дихромата кальция; и (ж) растворение и размешивание в растворе, полученном на шаге (е), от 1,0 до 3,0 части по весу оксида бора. 53. Способ создания сверхтеплопроводного материала по п.38, в котором этап производства раствора второго слоя включает следующие шаги: (а) размещение 100 частей по весу дважды дистиллированной воды в резервуар из инертного материала; (б) растворение и размешивание в дважды дистиллированной воде от 0,2 до 0,5 части по весу оксида кобальта; (в) растворение и размешивание в растворе, полученном на шаге (б), от 0,0 до 0,5 части по весу полуторного оксида марганца; (г) растворение и размешивание в растворе, полученном на шаге (в), от 0,0 до 0,01 части по весу оксида бериллия; (д) растворение и размешивание в растворе, полученном на шаге (г), от 0,0 до 0,5 части по весу хромата стронция; (е) растворение и размешивание в растворе, полученном на шаге (д), от 0,0 до 0,5 части по весу карбоната стронция; (ж) растворение и размешивание в растворе, полученном на шаге (е), от 0,0 до 0,2 части по весу оксида родия; (з) растворение и размешивание в растворе, полученном на шаге (ж), от 0,0 до 0,8 части по весу оксида двухвалентной меди; (и) растворение и размешивание в растворе, полученном на шаге (з), от 0,0 до 0,6 части по весу β-титана; (к) растворение и размешивание в растворе, полученном на шаге (и), от 1,0 до 1,2 части по весу дихромата калия; (л) растворение и размешивание в растворе, полученном на шаге (к), от 0,0 до 1,0 части по весу оксида бора; (м) растворение и размешивание в растворе, полученном на шаге (л), от 0,0 до 1,0 части по весу дихромата кальция; и (н) растворение и размешивание в растворе, полученном на шаге (м), от 0,0 до 2,0 части по весу дихромата алюминия или дихромата магния. 54. Способ создания сверхтеплопроводного материала по п.38, в котором этап производства порошка третьего слоя включает следующие шаги: (а) размещение от 0,0 до 1,75 части по весу денатурированного оксида родия в контейнер из инертного материала; (б) смешивание оксидом родия от 0,3 до 2,6 части по весу дихромата натрия; (в) смешивание со смесью, полученной на шаге (б), от 0,0 до 0,8 части по весу дихромата калия; (г) смешивание со смесью, полученной на шаге (в), от 0,0 до 3,1 части по весу денатурированного оксида радия; (д) смешивание со смесью, полученной на шаге (г), от 0,1 до 0,4 части по весу дихромата серебра; (е) смешивание со смесью, полученной на шаге (д), от 0,2 до 0,9 части по весу порошка монокристаллического кремния, обработанного магнитным полем; (ж) смешивание со смесью, полученной на шаге (е), от 0,0 до 0,01 части по весу оксида бериллия; (з) смешивание со смесью, полученной на шаге (ж), от 0,0 до 0,1 части по весу хромата стронция; (и) смешивание со смесью, полученной на шаге (з), от 0,0 до 0,1 части по весу оксида бора; (к) смешивание со смесью, полученной на шаге (и), от 0,0 до 0,1 части по весу пероксида натрия; (л) смешивание со смесью, полученной на шаге (к), от 0,0 до 1,25 части по весу β-титана; и(м) смешивание со смесью, полученной на шаге (л), от 0,0 до 0,2 части по весу дихромата алюминия или дихромата магния. 55. Способ создания сверхтеплопроводного материала по п.54, в котором указанный шаг нанесения раствора первого слоя включает шаги: (1) погружение по крайней мере части основания в раствор первого слоя так, чтобы раствор первого слоя контактировал по крайней мере с выбранной частью основания; и (2) просушка основания при естественных условиях окружающей среды для формирования первого слоя на выбранной части основания; указанный шаг нанесения раствора второго слоя включает шаги: (1) погружение по крайней мере части основания, покрытой первым слоем, в раствор второго слоя так, чтобы раствор второго слоя контактировал по крайней мере с выбранной частью первого слоя; и (2) просушка основания при естественных условиях окружающей среды для формирования пленки второго слоя на выбранной части первого слоя; и указанный шаг нанесения раствора третьего слоя включает шаг покрытия по крайней мере выбранной части второго слоя порошком третьего слоя. 56. Способ создания сверхтеплопроводного материала по п.55, в котором указанный шаг нанесения раствора первого слоя выполняют при температуре приблизительно от 0 до 30oС в течение по крайней мере 8 ч. 57. Способ создания сверхтеплопроводного материала по п.55, в котором указанный шаг нанесения третьего слоя выполняют при температуре приблизительно от 55 до 65oС в течение по крайней мере 4 ч. 58. Способ создания сверхтеплопроводного устройства, включающего сверхпроводящий теплоту материал, по п. 55, в котором указанный шаг нанесения указанного первого слоя включает шаги: (1) погружение основания, имеющего полость и первый и второй концы, в раствор первого слоя так, чтобы раствор первого слоя покрывал полость; (2) просушка основания при естественных условиях окружающей среды для формирования первого слоя внутри полости; указанный шаг нанесения указанного второго слоя включает шаги: (1) погружение основания в раствор второго слоя так, чтобы раствор второго слоя покрывал полость; (2) просушка основания при естественных условиях окружающей среды для формирования пленки второго слоя внутри полости; (3) установка торцевой заглушки на втором конце основания; (4) установка имеющей отверстие входной заглушки на первом конце основания; и (5) нагревание первого конца основания до температуры, не превышающей 120oС; и указанный шаг нанесения указанного третьего слоя включает шаги: (1) введение порошка третьего слоя через отверстие в количестве по крайней мере 1 м3 на 400000 м3 объема полости; (2) вставка пробки в отверстие; (3) нагревание первого конца основания до температуры от 80 до 125oС; (4) удаление пробки из отверстия; и (5) повторная вставка пробки в отверстие. 59. Способ создания сверхтеплопроводного устройства по п.58, в котором основание помещают в раствор первого слоя не в горизонтальном положении при температуре от 0 до 30oС по крайней мере на 8 ч; при этом раствор первого слоя проникает в поверхность носителя на глубину от 0,008 до 0,012 мм. 60. Способ создания сверхтеплопроводного устройства по п.58, в котором первый конец основания в растворе второго слоя направлен вниз, основание помещают в раствор второго слоя при температуре от 55 до 65oС по крайней мере на 4 ч; при этом формируют пленку второго слоя толщиной приблизительно от 0,008 до 0,012 мм. 61. Способ создания сверхтеплопроводного устройства по п.58, в котором температура на шаге нагрева при нанесении второго слоя составляет приблизительно 40oС и в котором пробку удаляют из отверстия не более чем приблизительно на 2 с.

Приоритет по пунктам:
27.01.1997 по пп. 1-37, 39-48, 50, 52-53, 61;
25.10.1996 по пп. 38, 49, 51, 54-60.

Документы, цитированные в отчете о поиске Патент 2002 года RU2190533C2

US 4590993, 27.05.1986
US 5077103, 31.12.1991
РЕГУЛИРУЕМАЯ ТЕПЛОВАЯ ТРУБА 1991
  • Бутырский В.И.
RU2037766C1

RU 2 190 533 C2

Авторы

Ку Юши

Даты

2002-10-10Публикация

1997-10-24Подача