Изобретение относится к области биологической защиты от ионизирующего излучения, а именно к способам приготовления композиционных материалов, используемых в атомной, радиохимической промышленности и военно-морском флоте.
Известен способ приготовления тяжелого бетона, заключающийся в смешении цемента, обычного песка, гематита и воды (см. Бродер Д.Л. и др. Бетон в защите ядерных установок, М.: АТОМИЗДАТ, 1973, с. 21).
Недостатком известного способа является то, что при использовании указанных заполнителей при изготовлении бетона в нем не сохраняется одна и та же плотность. Кроме того, материал не обладает оптимальным зерновым составом, от которого зависят удобоукладываемость и защитные свойства материала.
Наиболее близким, принятым за прототип, является способ приготовления композиции для защиты от радиации, изложенный в патенте RU 2105363, опубл. 20.02.1998, кл. G 21 F 1/02. В известном способе в барабан лопастной мешалки последовательно загружают расчетное количество жидкого стекла, добавок, молотых отходов оптического стекла и феррохромового шлака. Общее время перемешивания составляет 10-15 мин.
Недостатком известного способа является то, что получаемый продукт не обладает высокими защитными характеристиками, а также не обладает высокой радиационной стойкостью и не может быть использован для долгосрочной защиты.
Техническим результатом заявленного изобретение является улучшение физико-механических характеристик материала, повышение радиационной защиты и стойкости материала, а также долговечность его использования.
Указанный технический результат достигается за счет того, что в заявленном способе приготовления материала для радиационной защиты производят смешивание жидкого стекла и наполнителя, при этом в качестве неорганического связующего применяют жидкое стекло с силикатным модулем 1,7-2,1, а в качестве наполнителя используют тонкодисперсный железосодержащий гематитовый концентрат с размером частиц 40-50 мкм. Далее, производят прессование материала под удельным давлением 200-300 кг/см2, термообработку при температуре 700-750oС в течение 50-60 мин и отжиг в течение 7-8 ч при следующем соотношении компонентов, мас.%:
Жидкое стекло - 5 - 17
Гематитовый концентрат - 83 - 95
В качестве железосодержащего сырья используют высокодисперсный гематитовый концентрат Яковлевского месторождения КМА с насыпной плотностью 2000 кг/м3 фракции 40-50 мкм, имеющий следующий химический состав (табл. 1).
Использование данного железосодержащего концентрата в качестве наполнителя при производстве неорганического материала для радиационной защиты обусловлено высоким содержанием железа. Кроме того, невысокое содержание оксида железа (FeO) до 2%, свидетельствует о высокой степени окисления кварцитов (Fе2О3) до 96%, что относит их к самому высокому классу химической и радиационной стойкости материалов.
Использование жидкого стекла в качестве связующего при изготовлении неорганического материала для радиационной защиты обусловлено свойством жидкого стекла образовывать при термообработке и последующем отжиге стеклокристаллический монолит. Это свойство позволяет получить материал высокой плотности (2800-3300 кг/м3), обладающий высокими физико-механическими характеристиками, значительной термической устойчивостью и водоустойчивостью. Отсутствие водной фазы в материале приводит к получению высокой радиационной стойкости.
При этом следует учитывать то, что при содержании жидкого стекла менее 5 мас. % происходит ухудшение радиационно-защитных свойств и физико-механических показателей. Превышение содержания жидкого стекла в материале свыше 17 мас.% приводит к растрескиванию материала при термообработке и ухудшению радиационной стойкости. Кроме того, это содержание не позволяет прессовать материал, что снижает его радиационно-защитные и физико-механические характеристики.
Количественное содержание компонентов предлагаемого и известного материалов в табл. 2.
Пример. 85 г железосодержащего гематитового концентрата дисперсностью 50 мкм тщательно перемешивают с 15 г жидкого стекла с силикатным модулем, равным 2,0. Полученную смесь закладывают в пресс-форму 5х5х5 см и прессуют методом холодного прессования под удельным давлением 250 кг/см2. Полученный материал подвергают термообработке в муфельной печи до температуры 750oС, выдерживают в течение 50 мин и отжигают в течение 7 ч до полного его остывания. Полученный образец обладает следующими характеристиками: плотность 3000 кг/м3, прочность на сжатие 650 кг/см, линейный коэффициент ослабления ионизирующего излучения (источник Рm147 с энергией Е 120 кэВ) - 3,05, линейный коэффициент ослабления ионизирующего излучения (источник Cs137 с энергией Е 661 кэВ) - 0,252, радиационной стойкостью 2 балла.
Результаты радиационно-защитных и физико-механических испытаний представлены в табл. 3.
Измерение радиационно-защитных свойств материалов осуществлялось гамма-спектральным методом на базе многоканального анализатора с программным обеспечением "Прогресс" в аккредитованной в Госстандарте РФ лаборатории радиационного контроля "Спектр" (аттестат аккредитации 41143-96). Оценка физико-механических характеристик проводилась в государственном научном центре по сертификации строительных материалов и конструкций, аккредитованном в Госстандарте РФ "БелГТАСМ-сертификация".
Анализ данных, приведенных в табл. 3, показывает, что предлагаемый способ позволяет получить строительный материал для защиты от радиоактивного воздействия, обладающего высокими радиационно-защитными и физико-механическими характеристиками.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПРИГОТОВЛЕНИЯ КОМПОЗИЦИОННОГО МАТЕРИАЛА ДЛЯ РАДИАЦИОННОЙ ЗАЩИТЫ | 2000 |
|
RU2193246C2 |
СПОСОБ ПРИГОТОВЛЕНИЯ НЕОРГАНИЧЕСКОГО МАТЕРИАЛА ДЛЯ РАДИАЦИОННОЙ ЗАЩИТЫ | 2000 |
|
RU2193247C2 |
СПОСОБ ПРИГОТОВЛЕНИЯ НЕОРГАНИЧЕСКОГО МАТЕРИАЛА ДЛЯ РАДИАЦИОННОЙ ЗАЩИТЫ | 2004 |
|
RU2269832C2 |
СПОСОБ ПРИГОТОВЛЕНИЯ НЕОРГАНИЧЕСКОГО МАТЕРИАЛА ДЛЯ РАДИАЦИОННОЙ ЗАЩИТЫ | 2007 |
|
RU2353990C1 |
КОМПОЗИЦИОННЫЙ МАТЕРИАЛ ДЛЯ РАДИАЦИОННОЙ ЗАЩИТЫ | 2010 |
|
RU2470395C2 |
СПОСОБ ПОЛУЧЕНИЯ РАДИАЦИОННО-ЗАЩИТНОГО ЖАРОСТОЙКОГО КОМПОЗИЦИОННОГО МАТЕРИАЛА | 2000 |
|
RU2202132C2 |
РЕНТГЕНОЗАЩИТНЫЙ МАТЕРИАЛ | 1995 |
|
RU2091873C1 |
КОМПЛЕКТ ДЛЯ УПАКОВКИ И ТРАНСПОРТИРОВКИ РАДИОАКТИВНЫХ ОТХОДОВ | 2000 |
|
RU2179342C1 |
МНОГОСЛОЙНЫЙ ПОЛИМЕР-УГЛЕРОДНЫЙ КОМПОЗИТ ДЛЯ ЗАЩИТЫ ОТ КОСМИЧЕСКОГО ВОЗДЕЙСТВИЯ И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2019 |
|
RU2719682C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ СТРОИТЕЛЬНЫХ ИЗДЕЛИЙ | 2002 |
|
RU2206536C1 |
Сущность изобретения: способ приготовления материала для радиационной защиты включает смешивание жидкого стекла и наполнителя, прессование полученной смеси под удельным давлением 200-300 кг/см2, термообработку при температуре 700-750oС в течение 50-60 мин и отжиг в течение 7-8 ч. При этом в качестве неорганического связующего применяют жидкое стекло с силикатным модулем 1,7-2,1, а в качестве наполнителя используют тонкодисперсный железосодержащий гематитовый концентрат с размером частиц 40-50 мкм. Преимуществами изобретения являются: улучшение физико-механических характеристик материала, повышение радиационной защиты и стойкости материала, а также долговечность его использования. 3 табл.
Способ приготовления материала для радиационной защиты, состоящий из смешения жидкого стекла и наполнителя, отличающийся тем, что в качестве неорганического связующего применяют жидкое стекло с силикатным модулем 1,7-2,1, а в качестве наполнителя используют тонкодисперсный железосодержащий гематитовый концентрат с размером частиц 40-50 мкм, производят прессование материала под удельным давлением 200-300 кг/см2, термообработку при температуре 700-750oС в течение 50-60 мин и отжиг в течение 7-8 ч, при следующем соотношении компонентов, мас. %:
Жидкое стекло - 5-17
Гематитовый концентрат - 83-95
КОМПОЗИЦИЯ ДЛЯ ЗАЩИТЫ ОТ РАДИАЦИИ | 1995 |
|
RU2105363C1 |
RU 94005540 А1, 27.04.1996 | |||
DE 1621711 А, 30.12.1971 | |||
УСТАНОВКА ДЛЯ ИСПЫТАНИЙ НА ВНЕШНИЕ ВОЗДЕЙСТВИЯ И СПОСОБ ЕЕ ИСПОЛЬЗОВАНИЯ (ВАРИАНТЫ) | 2012 |
|
RU2516023C2 |
ДУБРОВСКИЙ В.Б | |||
и др | |||
Строительство атомных электростанций | |||
- М.: Энергия, 1979, с | |||
Катодное реле | 1918 |
|
SU159A1 |
Авторы
Даты
2002-11-20—Публикация
2000-05-24—Подача