СПОСОБ ПОЛУЧЕНИЯ БРИКЕТОВ ИЗ МЕЛКОДИСПЕРСНЫХ ОКСИДОВ МЕТАЛЛОВ Российский патент 2003 года по МПК C22B1/242 

Описание патента на изобретение RU2198940C1

Изобретение относится к области металлургии и может быть использовано при подготовке железорудного сырья для последующего восстановления в доменных и в других печах взамен окатышей и агломерата.

Известны способы брикетирования мелкодисперсных оксидов для последующего восстановления тепловой обработкой в восстановительной атмосфере, где в качестве связующего используют органические смеси - пек, гудрон, смолы, ПВА-клей (Физико-химические процессы в электротермии ферросплавов. Сб. статей, М., 1991 г., с. 56).

Однако получаемые брикеты теряют прочность при выгорании органических примесей и непригодны для доменного производства.

Известны также способы брикетирования, в которых в качестве связующего используют неорганические материалы: известь, цемент, жидкое стекло (Гончаров Б.Ф., Соломахин И.С. Производство чугуна, М.: Металлургия, 1965 г. , с. 56).

Использование в качестве связующего растворов жидкого стекла имеет преимущество, так как является катализатором восстановления окислов. Это связано с тем, что содержащийся в жидком стекле едкий натр в процессе восстановления реагирует с окислами металлов (Порошковая металлургия и напыленные покрытия. Учебник для вузов. В.Н. Анциферов и др. М.: Металлургия, 1987, с. 73).

Существенный недостаток неорганических связующих - невысокая восстановимость брикетов. Связано это с тем, что эти связующие в процессе упрочнения связывают воду в форме кристаллогидратов. Даже если предусмотрена термическая обработка брикетов и удаление этой влаги из брикета, влага вновь поглощается брикетом и в процессе тепловой обработки при восстановлении брикета препятствует проникновению в брикет восстановителя.

Кроме того, брикетирование с неорганическими связующими приводит к увеличению количества шлака и соответственно к повышению расхода кокса.

Наиболее близким техническим решением, принятым за прототип, является способ получения брикетов из промышленных дисперсных материалов (патент РФ 1786151, С 22 В 1/243, 1993, БИ 1), суть которого заключается в том, что в качестве связующего используют водный раствор жидкого стекла, с помощью которого смесь предварительно гранулируют, сушат путем обдувки углекислым газом, после чего прессуют брикеты и сушат их.

Недостаток этого способа заключается в невысокой прочности брикетов после прессования из-за повышенной влажности, в необходимости сушки брикетов и в малой скорости восстановления при тепловой обработке брикетов из-за недостаточной пористости брикета с повышенным содержанием окислителей в нем.

Техническая задача, решаемая изобретением, заключается в увеличении восстановимости брикетов при тепловой обработке в газовой атмосфере при одновременном повышении прочности и влагостойкости брикетов и уменьшении энергозатрат.

Поставленная задача решается за счет того, что в способе получения брикетов из мелкодисперсных оксидов металлов для восстановления тепловой обработкой в газовой атмосфере, включающем смешение оксидов с водным раствором жидкого стекла и последующее прессование, согласно изобретению в смесь для прессования вводят гидрофобные жидкие углеводороды с температурой кипения выше 300oС.

Предпочтительно, чтобы содержание углеводородов в смеси для прессования составлял 1-6 массовых процента. В качестве углеводородов использовались отработанные минеральные масла.

Решение задачи возможно, исходя из свойств системы "оксид металла - водный раствор жидкого стекла - жидкие углеводороды".

Водный раствор жидкого стекла при смешении с жидкими углеводородами легко образует устойчивую эмульсию - дисперсию углеводородов в жидком стекле.

В процессе прессования пустоты между частицами оксидов заполняются эмульсией. После затвердевания внешней фазы - жидкого стекла - частицы оксидов связаны между собой не монолитом из связующего, склонного к растрескиванию при обезвоживании, а ажурным каркасом из связующего.

Прочность каркаса можно изменять, меняя содержание внутренней фазы эмульсии - углеводорода.

При этом происходит снижение расхода жидкого стекла. А введение гидрофобных углеводородов в смесь оксидов с жидким стеклом разжижает эту смесь, что позволяет использовать более концентрированные растворы жидкого стекла. При этом соответственно уменьшается содержание влаги в брикете, а прессуемкость и прочность спрессованного брикета возрастают до такой степени, что прессование можно производить с большей скоростью. Кроме того, высокая прочность спрессованных брикетов позволяет производить последующие технологические операции (перемещение и складирование брикетов) без их термического упрочнения. Брикеты получаются более плотными, но в достаточной мере пористыми, чтобы удалился избыток влаги. По мере испарения влаги и формирования силикатного каркаса в брикете образуются микропоры, которые также заполняются углеводородами, что придает брикету в целом гидрофобность. Даже при полном погружении брикета в воду водой заполняются лишь крупные поры.

Восстановимость брикета определяется как процент удаленного из брикета кислорода в единицу времени, то есть чем меньше время полного восстановления брикета, тем выше восстановимость.

При восстановлении оксидов в процессе нагрева брикетов в газовой атмосфере до температуры 300oС вначале последовательно удаляется адсорбированная, а затем кристаллизационная вода. При достижении температуры кипения углеводородов их избыток удаляется из брикетов, причем часть углеводородов окисляется остаточной влагой, содержащейся в брикетах, образуя сажистый углерод.

После удаления из брикетов избытка углеводородов они имеют высокую газопроницаемость без потери прочности. Часть углеводородов остается в брикетах, участвуя в процессе прямого восстановления окислов.

Известно, что едкий натрий, содержащийся в жидком стекле, катализирует процесс восстановления окислов. В совокупности с высокой газопроницаемостью брикетов это свойство обеспечивает высокую восстановимость брикетов.

При использовании для брикетирования жидких гидрофобных углеводородов с температурой кипения ниже 300oС восстановимость брикетов снижается. Это связано с тем, что удаление углеводородов из брикетов происходит до того, как заканчивается удаление прочно связанной воды и углекислоты. Кроме того, из-за высокой летучести углеводородов с температурой кипения ниже 300oС и соответственно пожароопасности и токсичности применение их не представляется возможным (например, дизельное топливо, бензины и т.д.).

Изобретение иллюстрируется графическими зависимостями времени восстановления брикетов в газовой атмосфере при тепловой обработке и прочности на раздавливание от содержания смеси гидрофобных углеводородов в брикете.

Для реализации предлагаемого способа окалину дисперсностью от 1 до 500 мкм с 80% содержанием фракции от 50-100 мкм смешивали с отработанными индустриальным и моторным маслами и 60% раствором жидкого стекла и производили прессование. Из той же окалины изготавливали брикеты по прототипу. Результаты испытаний проведены в табл. 1 и 2.

Как видно из табл. 1, скорость прессования брикетов возросла в 20 раз, исключена энергозатратная операция сушки брикетов при температуре 250oС.

Общее время цикла прессования "загрузка - сжатие - выброс брикета" составило 2 с. Кроме того, уменьшился износ пуансона и матрицы, отсутствует налипание смеси на элементы пресса.

Из табл. 2 видно, что при меньшем расходе связующего прочность брикетов после прессования возросла в 5-10 раз. Увеличенное содержание связующего в брикетах, изготовленных по прототипу, связано с тем, что при меньшем содержании связующего грануляции не происходит. Прочность брикетов, изготовленных по предлагаемому способу, возрастает и превышает после суточной выдержки прочность брикетов, изготовленных по прототипу, в 2-3 раза. Водопоглощение уменьшилось в 5-10 раз в сравнении с прототипом. Время восстановления сократилось в 3-4 раза.

Как следует из графических зависимостей времени восстановления брикета в атмосфере оксида углерода при температуре 1000oС и прочности на раздавливание при 20oС в зависимости от содержания различных смесей углеводородов в брикете после суточной выдержки, прочность брикета, содержащего углеводороды по предлагаемому способу, возрастает до содержания углеводородов в брикете 4%, а после 5% быстро уменьшается. Время восстановления уменьшается с увеличением содержания углеводородов в брикете.

При использовании же жидких углеводородов (дизельное топливо) с температурой кипения ниже 300oС восстановимость брикетов снижается.

Таким образом, введение жидких гидрофобных углеводородов даже в незначительном количестве приводит к значительному повышению скорости восстановления оксидов металлов при увеличении прочности, влагостойкости брикетов и уменьшению энергозатрат при брикетировании.

Предлагаемый способ получения брикетов может быть использован для переработки и утилизации отходов металлургических производств, в частности, замасленной и чистой окалины, обезжиренных мелкодисперсных руд.

Похожие патенты RU2198940C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ БРИКЕТОВ ИЗ РУД И КОНЦЕНТРАТОВ ЧЕРНЫХ МЕТАЛЛОВ 2011
  • Трушко Владимир Леонидович
  • Кусков Вадим Борисович
  • Корнев Антон Владимирович
RU2484151C1
СПОСОБ ПЕРЕРАБОТКИ ПРОМЫШЛЕННЫХ ВОДОМАСЛОСОДЕРЖАЩИХ ОТХОДОВ 2000
RU2213153C2
БРИКЕТ ДЛЯ МЕТАЛЛУРГИЧЕСКОГО ПРОИЗВОДСТВА И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2005
  • Лосев Виктор Васильевич
  • Щербаков Евгений Николаевич
  • Дегай Алексей Сергеевич
  • Зуев Михаил Васильевич
  • Сорокин Юрий Васильевич
  • Демин Борис Леонидович
RU2317341C2
КАТАЛИЗАТОР ДЛЯ ОЧИСТКИ ОТХОДЯЩИХ ГАЗОВ С ИЗБЫТКОМ КИСЛОРОДА ОТ ОКСИДОВ АЗОТА, СПОСОБ ЕГО ПОЛУЧЕНИЯ И СПОСОБ ОЧИСТКИ ОТХОДЯЩИХ ГАЗОВ 2001
  • Бальжинимаев Б.С.
  • Барелко В.В.
  • Кильдяшев С.П.
  • Макаренко М.Г.
  • Симонова Л.Г.
  • Токтарев А.В.
  • Арендарский Д.А.
  • Борисова Т.В.
RU2186621C1
СПОСОБ ПОЛУЧЕНИЯ ЖЕЛЕЗОСОДЕРЖАЩИХ БРИКЕТОВ 2023
  • Павловец Виктор Михайлович
  • Домнин Константин Игоревич
RU2814587C1
СПОСОБ ПЕРЕРАБОТКИ ЖЕЛЕЗНЫХ РУД 2014
  • Литвиненко Владимир Стефанович
  • Трушко Владимир Леонидович
  • Кусков Вадим Борисович
RU2574560C1
СОРБЕНТ ДЛЯ УДАЛЕНИЯ ВРЕДНЫХ ПРИМЕСЕЙ ИЗ СРЕДЫ, ИХ СОДЕРЖАЩЕЙ, ПРЕДПОЧТИТЕЛЬНО ДЛЯ УДАЛЕНИЯ НЕФТИ И ВЫСШИХ УГЛЕВОДОРОДОВ 1999
  • Барелко В.В.
  • Кузнецова Н.П.
  • Бальжинимаев Б.С.
  • Кильдяшев С.П.
  • Макаренко М.Г.
  • Чумаченко В.А.
RU2169612C2
ШИХТА ДЛЯ ПРОИЗВОДСТВА БРИКЕТОВ ДЛЯ ВЫПЛАВКИ СИЛИКОМАРГАНЦА 2000
  • Ильин Владимир Васильевич
  • Бычков Вячеслав Юрьевич
  • Мазмишвили Сейран Михайлович
  • Гавриленко Николай Павлович
  • Сливинская Лариса Михайловна
  • Курунов И.Ф.
RU2165988C1
ШИХТА ДЛЯ ПРОИЗВОДСТВА БРИКЕТОВ ДЛЯ ВЫПЛАВКИ ФЕРРОСПЛАВОВ 2001
  • Ильин Владимир Васильевич
  • Бычков Вячеслав Юрьевич
  • Мазмишвили Сейран Михайлович
  • Гавриленко Николай Павлович
  • Сливинская Лариса Михайловна
  • Курунов И.Ф.
  • Бычков Юрий Владимирович
  • Батраков Василий Иванович
RU2201976C2
СПОСОБ БРИКЕТИРОВАНИЯ ЖЕЛЕЗОСОДЕРЖАЩИХ ОТХОДОВ В ВИДЕ ОКАЛИНЫ ДЛЯ ПЛАВКИ 2006
  • Салех Ахмед Ибрагим Шакер
  • Грицишин Александр Михайлович
RU2321647C1

Иллюстрации к изобретению RU 2 198 940 C1

Реферат патента 2003 года СПОСОБ ПОЛУЧЕНИЯ БРИКЕТОВ ИЗ МЕЛКОДИСПЕРСНЫХ ОКСИДОВ МЕТАЛЛОВ

Изобретение относится к области металлургии и может быть использовано при подготовке железорудного сырья для последующего восстановления в доменных и других печах взамен окатышей и агломерата. Сущность: способ получения брикетов из мелкодисперсных оксидов металлов для восстановления тепловой обработкой в газовой атмосфере включает смешение оксидов с водным раствором жидкого стекла и гидрофобными жидкими углеводородами с температурой кипения выше 300oС и последующее прессование. Технический результат заключается в увеличении восстановимости брикетов при тепловой обработке в восстановительной газовой атмосфере при одновременном повышении прочности и влагостойкости брикетов и уменьшении энергозатрат. 2 з.п. ф-лы, 2 табл. 1 ил.

Формула изобретения RU 2 198 940 C1

1. Способ получения брикетов из мелкодисперсных оксидов металлов для восстановления тепловой обработкой в газовой атмосфере, включающий смешение оксидов с водным раствором жидкого стекла и последующее прессование, отличающийся тем, что в смесь для прессования вводят жидкие гидрофобные углеводороды с температурой кипения выше 300oС. 2. Способ получения брикетов из мелкодисперсных оксидов металлов для восстановления тепловой обработкой в газовой атмосфере по п.1, отличающийся тем, что содержание углеводородов в смеси для прессования составляет 1-6 мас.%. 3. Способ получения брикетов из мелкодисперсных оксидов металлов для восстановления тепловой обработкой в газовой атмосфере по п.1, отличающийся тем, что в качестве углеводородов используют отработанные минеральные масла.

Документы, цитированные в отчете о поиске Патент 2003 года RU2198940C1

Способ получения брикетов из промышленных дисперсных материалов 1990
  • Бердников Виктор Иванович
  • Копырин Игорь Александрович
  • Воскобойник Михаил Иванович
  • Ковынев Рудольф Алексеевич
  • Полухин Олег Филиппович
  • Харитонов Николай Николаевич
  • Малышев Юрий Степанович
SU1786151A1
СМЕСЬ ДЛЯ ПОЛУЧЕНИЯ УГЛЕРОДОСОДЕРЖАЩИХ БРИКЕТОВ ДЛЯ ПРОИЗВОДСТВА МЕТАЛЛОВ И СПЛАВОВ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 1998
RU2138566C1
Способ получения на волокне оливково-зеленой окраски путем образования никелевого лака азокрасителя 1920
  • Ворожцов Н.Н.
SU57A1
Способ окомкования железорудного материала 1986
  • Мейер Роберт Роузен
  • Лоуренс Марлин
SU1538902A3
Прибор для определения кривизны буровых скважин 1929
  • Богушевский А.А.
SU20608A1
СПОСОБ ДИАГНОСТИКИ СТЕПЕНИ ТЯЖЕСТИ СИНДРОМА ВЕГЕТАТИВНОЙ ДИСТОНИИ 2003
  • Кузьмин А.Г.
  • Мельникова С.Л.
  • Горбунов В.В.
RU2258458C2
Способ получения дистиллята 2016
  • Ибрагимов Наиль Габдулбариевич
  • Рахманов Айрат Рафкатович
  • Лебедев Александр Владимирович
  • Девляшов Виталий Анатольевич
  • Капитонов Андрей Михайлович
RU2614452C1

RU 2 198 940 C1

Авторы

Сироткин С.Н.

Александров В.Н.

Блинов Ю.И.

Кузнецов В.К.

Берсенев А.А.

Даты

2003-02-20Публикация

2001-07-03Подача