СПЛАВ ДЛЯ МИКРОЛЕГИРОВАНИЯ И МОДИФИЦИРОВАНИЯ СТАЛИ Российский патент 2003 года по МПК C22C35/00 

Описание патента на изобретение RU2200767C2

Изобретение относится к черной металлургии, в частности к производству комплексных ферросплавов на основе кремния, и может быть использовано для легирования и модифицирования стали.

Из известных комплексных сплавов с кремнием, кальцием, ванадием наиболее близкими являются сплавы [1, 2]. Сплав на основе кремния для модифицирования стали [1] содержит, мас.%:
Ванадий - 2-15
Кальций - 1-15
Магний - 0,5-10
Алюминий - 2-20
РЗМ - 5-15
Кремний - 40-65
Железо - Остальное
Применение ферросплава такого состава для микролегирования и модифицирования затруднено, так как рекомендуется введение в сталь кальция для модифицирования не ниже 0,03%, или при данном составе ферросплава его расход составит не менее 2 кг на тонну жидкой стали. При таком расходе ферросплава возможно внести ванадия, даже при его максимальном содержании в сплаве (15%), не более 0,03%, а при реальном усвоении (80%) составит 0,02%. Для устойчивого же эффекта микролегирования необходимо, чтобы содержание ванадия в стали было в пределах 0,04-0,08%. Таким образом, необходимы более высокие расходы указанного ферросплава, что нежелательно, так как приведет к падению температуры жидкой стали и худшему усвоению ведущих элементов.

Наличие в составе ферросплава значительного количества модифицирующих элементов, таких как кальций и РЗМ, повышает его экплуатационные свойства. Однако следует отметить, что наличие в составе ферросплава такого элемента, как магний, нежелательно в основном по двум причинам:
1. Наличие магния в составе ферросплавов приводит к значительному пироэффекту при обработке жидкого металла.

2. Магний как модификатор эффективен при обработке жидкого чугуна, а его действие при обработке жидкой стали незначительно.

Наличие в составе ферросплава РЗМ приводит к значительному удорожанию ферросплава, так как среди заявленных в составе ферросплава элементов РЗМ самые дорогие. Кроме того, разница в цене сплава становится еще заметнее, если учесть атомные массы элементов; так для связывания одинаковых количеств кислорода и серы требуется РЗМ по массе примерно в 2 раза больше, чем кальция.

Близким к предлагаемому по технической сущности является также сплав для модифицирования стали [2], содержащий, мас%:
Ванадий - 5-15
Кальций - 3-15
Магний - 3-6
Алюминий - 5-15
Барий - 0,5-15
РЗМ - 5-20
Углерод - 0,05-0,5
Железо - 1-15
Кремний - Остальное
Как и в ранее рассмотренном ферросплаве, его недостатком являются низкое содержание ванадия и наличие в его составе таких элементов, как магний и РЗМ.

Задачей заявленного нами технического решения является увеличение эффективности использования полезных компонентов, содержащихся в комплексных ванадиевых сплавах, за счет улучшения условий усвоения элементов сплавов в стали и улучшения ее качества.

Поставленная задача решается тем, что сплав для микролегирования и модифицирования на основе кремния содержит ванадий, железо, кальций, барий, алюминий и углерод, согласно изобретению, при следующем соотношении компонентов, мас.%:
Ванадий - 15-25
Железо - 2-5
Кальций - 8-15
Барий - 8-15
Алюминий - 8-15
Углерод - Не более 0,4
Кремний - Остальное
при этом суммарное содержание кальция и бария не более 30%.

Предлагаемый комплексный ферросплав отличается соотношением компонентов и отсутствием в составе таких элементов, как магний и РЗМ, что позволяет его использовать для микролегирования и модифицирования стали.

Снижение содержания ванадия менее 15 мас.% нежелательно, так как приводит к повышению расхода ферросплава при обработке стали выше уровня 2 кг на тонну жидкой стали, что не рекомендуется при микролегировании. В то же время экспериментально установлено, что для проведения микролегирования в ферросплаве целесообразно иметь содержание ведущего элемента не более 25% из-за снижения коэффициента усвоения сплава сталью и затруднений при проведении процесса его выплавки.

Применение комплексных ферросплавов для модифицирования показывает, что модифицирующая способность ферросплавов возрастает в следующем порядке: BaSi - CaSi - CaSiBa - CaSiBaAl, при этом обработка стали ферросплавом CaSiBaAl дает лучшие результаты по сравнению со схемой обработки CaSiBa + Аl при одинаковом расходе алюминия.

Авторами установлено, что при легировании стали ванадием время распределения и усвоение ванадия в расплаве зависит от эффективности его раскисления (раскисляющей способности других компонентов ферросплава). Поэтому наряду с ванадием в состав сплава введены такие элементы, как кальций, барий, алюминий и кремний. Сумма кальция и бария не должна быть более 30%, поскольку повышение ее выше указанных значений не дает повышения эффективности влияния ферросплава на свойства стали, удорожая при этом ферросплав. Содержание же этих элементов в составе ферросплава на указанном уровне возможно обеспечить при содержании кремния не ниже 30%, Алюминий предохраняет ванадий от окисления. Однако получение его содержания в составе ферросплава выше 15% затруднено, а содержание ниже 8% не позволяет получать стабильные результаты по усвоению ванадия.

Изобретение иллюстрируется следующими примерами.

В лабораторной печи сопротивления методом сплавления стандартных ферросплавов (ферросилиция, силикокальция, алюмобария, феррованадия и др.) были выплавлены сплавы составов, представленных в таблице под 1-5 и прототип [2].

В лабораторных условиях на индукционной печи ИСТ 006/01 были выполнены опытные плавки стали марки 35ГС массой по 5 кг. Заготовки стали 35ГС следующего химического состава: С=0,33%; Мn=0,94%; Si=0,63%; Cr=0,14%; Ni=0,11%; S= 0,038%; Р= 0,016%, расплавляли, нагревали до температуры 1600oС, обрабатывали путем введения ферросплавов (таблица) из расчета введения ванадия на уровне 0,06 мас.% и выпускали в песчаные формы.

Химический анализ и исследования механических свойств на полученных образцах показали, что наилучшие результаты по усвоению ванадия и влиянию на уровень механических свойств были получены при обработке расплава ферросплавами 2-3 (таблица). Применение ферросплавов 1, 5 и прототипа (таблица) привело к меньшему повышению механических свойств и усвоению ванадия.

На основании лабораторных исследований в промышленных условиях производителем комплексных ванадийсодержащих ферросплавов ООО "Пиромет" выплавлена опытно-промышленная партия комплексного ванадиевого ферросплава следующего химического состава, мас. %: V=22,3; Са=12,8; Ва=11,4; Аl=10,9; Fe=6,2; C= 0,24; Si остальное (таблица, сплав 6).

На ОАО "Мет.завод им.А.К.Серова" проведена компания по выплавке конструкционной марки стали (35ГС) с обработкой ферросплавом (таблица, сплав 6) с целью повышения механических свойств.

Выплавку стали осуществляли в 180-тонной мартеновской печи с выпуском металла на два ковша: I ковш - металл обрабатывался с использованием заявляемого комплексного ферросплава; II ковш - металл обрабатывался с использованием феррованадия марки ФВд50.

Результатами химического анализа, металлографических исследований и испытаний механических свойств показано, что применение заявляемого ферросплава для обработки стали по сравнению с использованием стандартного ферросплава - феррованадия марки ФВд50 - позволяет
1) получить усвоение ванадия на исследуемых марках стали на уровне 94-97%;
2) снизить брак прокатной заготовки по трещинам на 18-47%;
3) увеличить механические свойства на 11-19%.

Таким образом,
1. Содержание ванадия в составе ферросплава ниже 15%, даже при достаточно хорошем усвоении, не приводит при обработке стали к повышению ее механических свойств. В то же время, как указывалось ранее, в ферросплаве целесообразно иметь содержание ведущего элемента не более 25% из-за снижения коэффициента усвоения сплава сталью и затруднений при проведении процесса его выплавки.

2. Сумма кальция и бария на уровне 20-30% позволяет при обработке стали получать высокие результаты по модифицированию стали, так как сплав, с точки зрения авторов, имеет оптимальную плотность, но и не должна быть более указанных значений, поскольку не дает повышения эффективности влияния ферросплава на свойства стали, удорожая при этом ферросплав.

3. Содержание алюминия в составе ферросплава ниже 10% не позволяет получить стабильные результаты по усвоению ванадия и повышению при обработке стали ее механических свойств, так как алюминий предохраняет ванадий от окисления.

Проведенные лабораторные, опытно-промышленные эксперименты и практические результаты, представленные в таблице, указали реальную возможность применения заявляемого ферросплава для микролегирования и модифицирования стали с целью повышения коэффициента усвоения ванадия расплавом на 8-11% и повышения механических свойств на 10-20%.

Источники информации
1. А.с. РСФСР 532651, С 22 С 35/00, И.С. Кумыш, В.Н. Горячев, Н.П. Лякишев, от 06.08.75, Модификатор, БИ 1976 39.

2. А.с. УкССР 541889, С 22 С 35/00, В.Д. Краля, А.Г.К. Кулеев, И.М. Мамедов и др., от 02.09.75, Модификатор, БИ 1977 1.

Похожие патенты RU2200767C2

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ КОМПЛЕКСНОГО ВАНАДИЙСОДЕРЖАЩЕГО СПЛАВА 2002
  • Шешуков О.Ю.
  • Жучков В.И.
  • Бурмасов С.П.
RU2235142C1
КОМПЛЕКСНЫЙ СПЛАВ ДЛЯ МИКРОЛЕГИРОВАНИЯ И РАСКИСЛЕНИЯ СТАЛИ НА ОСНОВЕ ЖЕЛЕЗА 2013
  • Андреев Никита Андреевич
  • Жучков Владимир Иванович
  • Заякин Олег Вадимович
RU2537677C1
ЛИТАЯ ШТАМПОВАЯ СТАЛЬ 1996
  • Гурьев А.М.
  • Андросов А.П.
  • Жданов А.Н.
  • Кириенко А.М.
  • Свищенко В.В.
RU2095460C1
Комплексный сплав для микролегирования и раскисления стали на основе железа 2019
  • Кель Илья Николаевич
  • Жучков Владимир Иванович
  • Заякин Олег Вадимович
  • Сычев Александр Владимирович
  • Бабенко Анатолий Алексеевич
RU2715510C1
ВЫСОКОПРОЧНАЯ СТАЛЬ 1991
  • Смирнов Л.А.
  • Панфилова Л.М.
  • Филиппенков А.А.
  • Гальперина С.С.
  • Подольская Э.П.
  • Чернышев В.Н.
  • Кондратьева Г.Н.
  • Халиулин В.Х.
  • Исхаков Ф.М.
  • Карнаухов В.Н.
  • Воронов Ю.И.
  • Зайко В.П.
  • Байрамов Б.И.
  • Мельник С.Г.
  • Рыжков А.Г.
  • Сибилев Ю.П.
RU2026407C1
СПЛАВ НА ОСНОВЕ ЖЕЛЕЗА ДЛЯ ПОЛУЧЕНИЯ СТАЛИ И ФЕРРОСПЛАВОВ 2000
  • Лекомцев Б.П.
  • Островский Я.И.
  • Кириченко Н.Ф.
  • Жучков В.И.
  • Мальцев Ю.Б.
  • Заякин О.В.
  • Вотяков А.Г.
  • Нарыжный В.Д.
  • Фадеев В.Г.
RU2184171C2
Высокопрочный чугун 1990
  • Святкин Борис Константинович
  • Карпенко Михаил Иванович
  • Ахунов Турсун Абдолимович
  • Егорова Марина Борисовна
  • Бадюкова Светлана Михайловна
SU1827395A1
СПОСОБ ПРОИЗВОДСТВА РЕЛЬСОВОЙ СТАЛИ 2009
  • Исхаков Альберт Ферзинович
  • Малько Сергей Иванович
  • Гольдштейн Владимир Яковлевич
  • Григорьев Владимир Николаевич
  • Пащенко Сергей Витальевич
  • Радченко Юрий Анатольевич
RU2434060C2
СТАЛЬ 2000
  • Колокольцев В.М.
  • Вдовин К.Н.
  • Тахаутдинов Р.С.
  • Бодяев Ю.А.
  • Терентьев В.Л.
  • Носов А.Д.
  • Женин Е.В.
  • Кандаков А.И.
  • Долгополова Л.Б.
RU2184792C2
Половинчатый чугун 1990
  • Сильман Григорий Ильич
SU1746888A3

Иллюстрации к изобретению RU 2 200 767 C2

Реферат патента 2003 года СПЛАВ ДЛЯ МИКРОЛЕГИРОВАНИЯ И МОДИФИЦИРОВАНИЯ СТАЛИ

Изобретение относится к черной металлургии, а именно к производству ферросплавов. Предложен сплав на основе кремния, содержащий ванадий, железо, кальций, барий, алюминий и углерод, при следующем соотношении компонентов, мас. %: ванадий 15-25; железо 2-5; кальций 8-15; барий 8-15; алюминий 8-15; углерод не более 0,4; кремний остальное, при этом суммарное содержание кальция и бария не более 30%. Изобретение направлено на увеличение эффективности использования полезных компонентов, содержащихся в комплексных ванадиевых сплавах, за счет улучшения условий усвоения элементов сплавов в стали и улучшения ее качества. 1 табл.

Формула изобретения RU 2 200 767 C2

Сплав для микролегирования и модифицирования стали на основе кремния, содержащий ванадий, железо, кальций, барий, алюминий и углерод, отличающийся тем, что содержит указанные компоненты при следующем соотношении компонентов, мас. %:
Ванадий - 15-25
Железо - 2-5
Кальций - 8-15
Барий - 8-15
Алюминий - 8-15
Углерод - Не более 0,4
Кремний - Остальное
при этом суммарное содержание кальция и бария не более 30%.

Документы, цитированные в отчете о поиске Патент 2003 года RU2200767C2

Модификатор 1975
  • Краля Василий Дмитриевич
  • Кулиев Ариф Гасан Кули
  • Мамедов Ильяс Меджид
  • Вихляев Владимир Борисович
  • Примеров Сергей Николаевич
  • Синельников Иван Демьянович
SU541889A1
Лигатура 1981
  • Сидельковский Эрнст Яковлевич
  • Филиппенков Анатолий Анатольевич
  • Мизин Владимир Григорьевич
  • Рябчиков Иван Васильевич
  • Дубровин Анатолий Сергеевич
SU998560A1
МОДИФИКАТОР ДЛЯ ЧУГУНА 1991
  • Столяр О.Ю.
RU2040575C1
КОМПЛЕКСНЫЙ СПЛАВ ДЛЯ ЛЕГИРОВАНИЯ СТАЛИ 1991
  • Смирнов Л.А.
  • Панфилова Л.М.
  • Филиппенков А.А.
  • Гальперина С.С.
  • Подольская Э.П.
  • Чернышев В.Н.
  • Кондратьева Г.Н.
  • Халиулин В.Х.
  • Исхаков Ф.М.
  • Карнаухов В.Н.
  • Воронов Ю.И.
  • Зайко В.П.
  • Байрамов Б.И.
  • Мельник С.Г.
  • Рыжков А.Г.
  • Сибилев Ю.П.
RU2026402C1
СПОСОБ ОБРАБОТКИ СЕЙСМИЧЕСКИХ ЗАПИСЕЙ 0
  • Ю. Р. Дадерко
SU268679A1

RU 2 200 767 C2

Авторы

Шешуков О.Ю.

Жучков В.И.

Бурмасов С.П.

Карпов А.А.

Васин Е.А.

Решетников В.А.

Вдовин В.В.

Касьян В.И.

Подковыркин В.В.

Даты

2003-03-20Публикация

2001-04-04Подача