РЕАКТОР ДЛЯ ОКИСЛЕНИЯ НЕФТЕПРОДУКТОВ Российский патент 2003 года по МПК B01J10/00 C10C3/04 

Описание патента на изобретение RU2203132C1

Изобретение относится к газожидкостным реакторам непрерывного действия с противоточным движением фаз. Предлагаемое устройство может также использоваться в качестве тепло-и массообменного аппарата при непосредственном контакте с жидкой и газовой (или паровой) фазами. Особенно эффективно его применение в процессе окисления нефтепродуктов кислородом воздуха при получении окисленных битумов из гудронов, экстрактов селективной очистки масел, асфальтов процесса деасфальтизации гудронов и их смесей.

Известен реактор для получения окисленных битумов, в котором для интенсификации процесса применяется струйная техника - инжекторные насосы (А.С. 1781284 СССР, 1992).

Недостатком данного устройства является то, что попытка решения поставленной задачи осуществляется только за счет развития поверхности взаимодействия фаз. Кроме этого, процесс окисления сырья в реакторе производится в периодическом режиме.

За прототип изобретения принят газожидкостной реактор (Пат. 1806002 СССР, 1993), в котором повышение эффективности процесса достигается за счет усиления межфазного взаимодействия и увеличения времени контакта фаз путем применения кавитационно-вихревой аппаратуры.

Недостатком этого реактора является то, что внедрение предлагаемого технического решения решает вопрос развития поверхности контакта фаз и интенсификации их перемешивания в ограниченной зоне реакторного объема. Кроме этого, подача, сырья и воздуха практически в одну точку лишает колонный реактор одного из своих главных преимуществ - противотока сырья и газовоздушного потока в масштабе всего аппарата (вне зависимости от места установки кавитационно-вихревого устройства).

Цель изобретения - получение битумов заданного качества при увеличении производительности реактора по сырью наряду со снижением удельного расхода подаваемого на окисление воздуха и повышением эффективности его использования - сокращением содержания кислорода в газах окисления.

Поставленная цель достигается тем, что в верхней части реактора, представляющего собой вертикальный цилиндрический корпус, оснащенный трубопроводами ввода сырья и воздуха, соосно c корпусом устанавливается эжектор ввода сырья с патрубком для эжекции газов окисления, выходящим в пространство над уровнем сырья в реакторе, тогда как диффузор эжектора ввода сырья с закрепленным на нем отражателем находится ниже уровня сырья. В нижней части реактора также соосно с корпусом установлен эжектор подачи воздуха, к диффузору которого прикреплен отражатель.

На фиг. 1 схематично изображен реактор; на фиг.2, 3 показаны узлы ввода сырья и воздуха через соответствующие эжекторы, а также основные потоки газа и жидкости в зоне их установки. На фиг.2 и 3 направление движения основных потоков газа и жидкости показаны соответственно стрелками с пунктирными и сплошными линиями.

В верхней части цилиндрического корпуса 1 реактора соосно установлен эжектор ввода сырья, состоящий из приемной камеры 2, камеры смешения 3, диффузора 4 и рабочего сопла 5, соединенного с внешней линией подачи сырья трубопроводом 6. К приемной камере 2 присоединен патрубок 7, выходящий в пространство над уровнем сырья в реакторе. Диффузор 4, к которому крепится отбойник 8, погружен в сырье.

Эжектор ввода воздуха находится в нижней части реактора и также установлен соосно с корпусом 1. Эжектор состоит из приемной камеры 9, камеры смешения 10, диффузора 11 и рабочего сопла 12, соединенного с внешней линией подачи воздуха трубопроводом 13.

Принцип работы реактора, основой которого является применение струйной техники - эжеторов, заключается в следующем.

Непрерывно подаваемые в реактор сырье 14 и воздух 15 попадают через соответствующие эжекторы в верхнюю и нижнюю части корпуса 1. Между зонами установки эжекторов сырье и диспергированный воздух совершают противоточное движение. Образовавшиеся в процессе реакции газы окисления 16 после достижения уровня сырья в реакторе покидают реакционное пространство и отводятся из аппарата. Битум 17, полученный в процессе окисления сырья кислородом воздуха, откачивают из нижней части реактора.

Сырье 14, поступающее с высокой скоростью через сопло 5 в сужающуюся часть приемной камеры 2 эжектора ввода сырья, создает в полости этой камеры разрежение. В результате по патрубку 7, соединяющему эжектор с частью реактора, не заполняемой сырьем, эжектируются газы окисления, содержащие не прореагировавший кислород.

Процесс разрушения рабочей струи - потока сырья, попадающего из сопла 5 в эжектор, происходит следующим образом. Струя сырья в газовой среде (потоке эжектируемого газа) разрушается в результате того, что капли выпадают из ядра струи. Разрушение струи начинается с появления ряби (волн) на ее поверхности на расстоянии нескольких диаметров от среза сопла. Затем амплитуда волн растет до тех пор, пока капли или частицы жидкости не начнут выпадать в окружающий газовый поток.

По мере развития процесса ядро струи уменьшается и, в конце концов, исчезает. Расстояние, на котором происходит разрушение струи, считается зоной перемешивания, в которой сплошной средой является эжектируемый газ. Камера смешения в этой зоне заполнена газожидкой эмульсией (пеной). После скачкообразного повышения давления в следующей зоне камеры смешения сплошной средой становится жидкость, в которой распределены пузырьки газа. Образующаяся газожидкая смесь в виде высокоскоростного потока из диффузора поступает на отражатель 8.

Эжектирование части газов окисления струей входящего в реактор сырья приводит к тому, что этот газовый поток, содержащий не прореагировавший кислород, снова попадает в реакционное пространство аппарата, повышая эффективность использования применяемого воздуха, о чем можно судить по снижению концентрации кислорода в газах окисления 16.

Этому способствует также увеличение поверхности контакта газовой и жидкой фаз в камере смешения эжектора - переход смеси сырья и эжектируемых газов от состояния пены к потоку жидкости, включающей пузырьки газа с высокой степенью их дисперсности.

Кроме того, достигается интенсификация перемешивания в верхней части реактора. Объем эжектируемых газов окисления значительно превосходит объем поступающего сырья и образующийся суммарный газожидкий поток, выходящий из диффузора 4 с большой скоростью, отражателем 8 направляется к периферии поперечного сечения корпуса реактора, смешиваясь с восходящим газовоздушным потоком из нижней части аппарата. Часть сырья, увлекаемого вверх потоком эжектируемых газов окисления, образует циркулирующий поток среды в верхней зоне реактора. В сочетании с интенсификацией перемешивания это способствует более полному окислению сырьевого потока в этой зоне.

Воздух 15, поступающий с высокой скоростью через сопло 12 в сужающуюся часть приемной камеры 9 эжектора подачи воздуха, создает в полости этой камеры разрежение. В результате часть сырьевого потока с газовоздушной смесью, находящейся в этой зоне, эжектируются в приемную камеру 9. Образующаяся газожидкая смесь через смеситель 10 и диффузор 11 в виде высокоскоростного потока подается на отражатель 18, распределяющий ее по поперечному сечению реактора. Высокая степень диспергирования подаваемого воздуха, перемешивание струями отраженного потока и восходящим газовоздушным потоком, многократная циркуляция воздуха, увлекаемого в эжектор в составе газожидкой смеси, обеспечивают интенсификацию процесса окисления в зоне подачи в реактор воздуха.

Таким образом, использование энергии входящих в реактор потоков за счет применения струйной техники - эжекторов позволяет повысить степень диспергирования фаз в реакционном объеме, интенсифицировать процесс перемешивания в зонах, подачи сырья и воздуха, а также создать циркуляционные потоки в этих зонах, обеспечивая многократное контактирование реагирующих фаз. При этом в основном объеме аппарата сохранено противоточное движение сырья и воздуха.

Внедрение промышленного реактора предлагаемой конструкции позволило при получении дорожных битумов заданного качества повысить производительность аппарата по сырью на 30% наряду со снижением удельного расхода воздуха (в расчете на одну тонну сырья) на 37% и повышением эффективности его использования - сокращением содержания кислорода в газах окисления.

Кроме этого, изменение гидродинамического и температурного режимов в аппарате, а также более равномерное распределение газовоздушного потока в реакционном объеме приводит к предотвращению получения переокисленных компонентов - возможности получения битума повышенного качества за счет улучшения его эксплуатационных характеристик.

Похожие патенты RU2203132C1

название год авторы номер документа
ГАЗОЖИДКОСТНЫЙ РЕАКТОР 1998
  • Хафизов Ф.Ш.
  • Юминов И.П.
  • Кузьмин В.И.
  • Баженов В.П.
  • Аликин М.А.
  • Хафизов Н.Ф.
RU2143314C1
ВИХРЕВОЙ ЭЖЕКТОР 2014
  • Вагнер Виктор Владиславович
  • Курилов Виктор Егорович
  • Новиков Михаил Иванович
RU2564500C1
РЕАКТОР ДЛЯ ОКИСЛЕНИЯ НЕФТЯНЫХ ОСТАТКОВ 1993
  • Некрасов Н.Н.
  • Ушатинская О.П.
  • Киселева Н.Б.
RU2077378C1
СПОСОБ РЕГУЛИРОВАНИЯ ПЛОТНОСТИ ТАМПОНАЖНЫХ И ПРОМЫВОЧНЫХ РАСТВОРОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2000
  • Логвиненко С.В.
  • Вяхирев В.И.
  • Шаманов С.А.
  • Рогов А.А.
RU2206706C2
РЕАКТОР И КАВИТАЦИОННЫЙ АППАРАТ 2007
  • Геллер Сергей Владимирович
RU2371245C2
СПОСОБ ПОЛУЧЕНИЯ 1,2-ДИХЛОРЭТАНА 2000
  • Шишкин З.А.
  • Самсонов В.В.
  • Мубараков Р.Г.
  • Кузнецов А.М.
  • Харитонов В.И.
  • Медведев Ю.И.
  • Пуляевский Н.Л.
RU2186759C2
СПОСОБ ПОЛУЧЕНИЯ ПЕНОГРАФИТА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2003
  • Ионов С.Г.
  • Павлов А.А.
  • Козлов А.В.
  • Авдеев В.В.
RU2240282C1
УСТАНОВКА ДЛЯ МУЛЬТИФАЗОВОГО ПИРОЛИЗА ОРГАНИЧЕСКОГО СЫРЬЯ 2009
  • Беленов Евгений Александрович
  • Гончаров Дмитрий Владимирович
  • Житков Владимир Николаевич
  • Токарев Александр Евгеньевич
RU2408820C1
СПОСОБ ПОЛУЧЕНИЯ ПОЛУАКТИВНОГО ТЕХНИЧЕСКОГО УГЛЕРОДА И РЕАКТОР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2008
  • Иваницкий Михаил Антонович
  • Анисимов Сергей Александрович
  • Кузнецов Алексей Дмитриевич
  • Иваницкий Валерий Антонович
  • Анисимова Нелли Николаевна
  • Ткаченко Александр Трофимович
  • Иваницкий Вадим Михайлович
  • Клюев Владимир Иванович
RU2394054C2
УСТРОЙСТВО ДЛЯ ОСУЩЕСТВЛЕНИЯ ТЕРМОДЕСТРУКТИВНЫХ ПРОЦЕССОВ ПЕРЕРАБОТКИ ТЯЖЕЛЫХ НЕФТЯНЫХ ОСТАТКОВ 2013
  • Лебедев Юрий Николаевич
RU2545378C1

Иллюстрации к изобретению RU 2 203 132 C1

Реферат патента 2003 года РЕАКТОР ДЛЯ ОКИСЛЕНИЯ НЕФТЕПРОДУКТОВ

Реактор для окисления нефтепродуктов относится к газожидкостным реакторам и может быть использован в нефтехимической промышленности. Реактор состоит из вертикального цилиндрического корпуса, оснащенного трубопроводами ввода сырья и воздуха. В верхней части реактора соосно с корпусом установлен эжектор ввода сырья с патрубком для эжекции газов окисления, выходящим в пространство над уровнем сырья в реакторе. Диффузор эжектора ввода сырья с закрепленным на нем отражателем находится ниже уровня сырья в реакторе. В нижней части реактора также соосно с корпусом установлен эжектор подачи воздуха, к диффузору которого прикреплен отражатель. Данная конструкция реактора обеспечивает получение битумов заданного качества при увеличении производительности реактора по сырью наряду со снижением удельного расхода подаваемого на окисление воздуха и повышением эффективности его использования. 3 ил.

Формула изобретения RU 2 203 132 C1

Реактор для окисления нефтепродуктов, состоящий из вертикального цилиндрического корпуса, оснащенного трубопроводами ввода сырья и воздуха, отличающийся тем, что в верхней части реактора соосно корпусу установлен эжектор ввода сырья с патрубком для эжекции газов окисления, выходящим в пространство над уровнем сырья в реакторе, при этом диффузор эжектора ввода сырья с закрепленным на нем отражателем находится ниже уровня сырья в реакторе, а в нижней части реактора также соосно корпусу установлен эжектор подачи воздуха, к диффузору которого прикреплен отражатель.

Документы, цитированные в отчете о поиске Патент 2003 года RU2203132C1

Газожидкостной реактор 1991
  • Хафизов Фаниль Шамильевич
  • Шуверов Владимир Михайлович
  • Кузеев Искандер Рустемович
  • Хуснияров Мират Ханифович
  • Рассадин Виктор Гаврилович
  • Абызгильдин Юнир Миннигалеевич
  • Аликин Михаил Александрович
  • Бахвалов Владимир Федорович
SU1806002A3
Устройство для производства битума 1990
  • Токманенко Виталий Яковлевич
  • Микитюк Владимир Ализарович
SU1781284A1
ГАЗОЖИДКОСТНЫЙ РЕАКТОР 1999
  • Хафизов Ф.Ш.
  • Хафизов Н.Ф.
RU2160627C1
ВОЗДУШНО-АЗОТНАЯ КОМПРЕССОРНАЯ СТАНЦИЯ ДЛЯ РАКЕТНО-КОСМИЧЕСКОГО СТАРТОВОГО КОМПЛЕКСА (ВАРИАНТЫ) 2009
  • Курочкин Андрей Александрович
  • Михальченко Сергей Михайлович
  • Приходько Татьяна Викторовна
  • Рахманов Жан Рахманович
  • Чумаченко Геннадий Федорович
RU2410570C1
УНИПОЛЯРНЫЙ АГРЕГАТ 2004
  • Забак Ольгерт Петрович
RU2282930C2

RU 2 203 132 C1

Авторы

Яковлев С.П.

Логинов С.А.

Косульников А.В.

Мыльцын А.В.

Якунин А.Н.

Даты

2003-04-27Публикация

2001-11-21Подача