СПОСОБ ОЧИСТКИ И ОБЕЗЗАРАЖИВАНИЯ ВОДЫ Российский патент 2003 года по МПК C02F9/04 C02F9/04 C02F1/28 C02F1/50 C02F1/76 C02F103/06 

Описание патента на изобретение RU2203228C2

Изобретение относится к очистке и обеззараживанию воды из любых природных источников, скважин, колодцев, содержащих природные и техногенные загрязнения, а также к доочистке воды из водопроводной сети.

Предлагаемый способ может быть также применен в разработках индивидуальных фильтрующих установок или малогабаритных (миниатюрных) фильтрующих устройств, применяемых в полевых условиях.

Известны различные способы очистки и обеззараживания воды. Очевидно, что независимо от способа водоподготовки обеззараживание является ее важнейшей стадией. В настоящее время широко применяемым, наиболее экономичным приемом обеззараживания воды является хлорирование. Этот способ ведется в динамических условиях и часто требует (в зависимости от качества воды) введения значительных доз хлорсодержащих реагентов, что делает необходимым последующее дехлорирование воды. В то же время, несмотря на применение значительных доз активного хлора, освобождение воды от вирусов и бактерий происходит довольно часто недостаточно эффективно.

Известен, например, способ очистки и обеззараживания воды по патенту РФ N 2125973, C 02 F 1/72, B 01 F 3/04, 1997, согласно которому для обеззараживания воды применяются химические реагенты: хлор, озон, кислота, щелочь, фтор. Для подавления микрофлоры до нужных показателей в оборотную воду вводят определенное количество растворенного реагента.

Такой способ, хотя и позволяет обеззараживать воду, однако при его использовании образуется большое количество летучих галогенорганических соединений, обладающих канцерогенными свойствами, что исключает возможность его использования для тонкой очистки питьевой воды.

Известен также способ очистки и обеззараживания воды по патенту РФ N 2098359, C 02 F 1/72, 1996, включающий операции обработки воды окислителями на основе хлора и коагулянтами, последующего отстаивания и фильтрации, причем при обработке воды в нее вводят растворы, содержащие хлорноватистую кислоту в качестве окислителя и хлориды алюминия.

Такой способ, хотя и позволяет очищать и обеззараживать воду, однако не исключает довольно высокую кислотность воды после ее очистки, что ведет к коррозии оборудования и сетей и также препятствует использованию данного способа для тонкой очистки питьевой воды.

Известен также способ очистки и обеззараживания воды по патенту РФ N 2133226, C 02 F 1/70, B 01 J 23/89, 1998, заключающийся в том, что для обеспечения процесса денитрификации воды - очистки воды от растворенных в ней нитратов и/или нитритов путем их восстановления в присутствии водорода - катализатор для гидроденитрификации воды состоит из неорганического носителя, изготовленного из силикатных стекловолокнистых материалов, содержащих 55. . . 98% оксида кремния с диаметром волокон 1...10 мкм, имеющих пористую структуру с площадью внутренней поверхности 2...100 м2/г, применяемых в форме тканых изделий и нетканых блоков, и металл из ряда: палладий, родий и/или из палладия, модифицированного металлами из группы: медь, олово, индий, серебро, цинк, при общем содержании металла в волокнистом носителе 0,01...1,0 мас.%.

Такой способ, хотя и позволяет очищать и обеззараживать воду от растворенных в ней нитратов и/или нитритов, однако его применение для тонкой очистки питьевой воды затруднительно вследствие высокой стоимости катализатора, в состав которого входят драгоценные металлы, а также из-за селективности (выборности) его действия.

Наиболее близким по технической сущности и достигаемому эффекту является известный способ очистки и обеззараживания воды по патенту РФ N 2114065, C 02 F 1/28, 1/62, 1997, заключающийся а том, что очищаемую воду при комнатной температуре подают снизу в сорбционный фильтр колонного типа, заполненный волокнистым фильтром-сорбентом, причем очистку воды от растворимых соединений ртути ведут сорбцией на модифицированном волокнистом сорбенте при плотности упаковки сорбента 0,08...0,16 кг/л при рН 4...6, при этом сорбцию проводят при линейной скорости фильтрации 250...400 см/ч.

Такой способ, хотя и позволяет очищать и обеззараживать воду от растворимых соединений ртути с использованием одного из наиболее экономичных приемов интенсификации процесса водоподготовки путем применения сорбентов, однако его применение для тонкой очистки питьевой воды затруднительно вследствие того, что для этой цели требуется применение дополнительных операций очистки, а также требуется создание дорогостоящей системы водоподготовки значительных габаритов с относительно небольшим ресурсом работы.

Задачей настоящего изобретения является существенное повышение эффективности процесса очистки и обеззараживания воды, преимущественно питьевой.

Данная задача решается в первую очередь за счет технического результата от использования предлагаемого изобретения, заключающегося в существенном повышении степени очистки и обеззараживания воды, снижении габаритных размеров системы водоподготовки и увеличении ее ресурса при одновременном снижении затрат на ее изготовление и эксплуатацию.

Указанный результат достигается тем, что в известном способе очистки и обеззараживания воды, заключающемся в том, что очищаемую воду подают в сорбционный фильтр, содержащий фильтр-сорбент,
во-первых, воду последовательно пропускают через механический фильтр, первый сорбционный фильтр, сорбционно-окислительный фильтр, углеродно-диоксимарганцевый катализатор и наконец через второй сорбционный фильтр, при этом первый сорбционный фильтр, сорбционно-окислительный фильтр и второй сорбционный фильтр выполнены из углеграфитовых волокнистых материалов с высокоразвитой поверхностью микропор, причем площадь внутренней поверхности пор составляет 100. . .200 м2/г, а плотность упаковки первого и второго сорбционных фильтров составляет 0,01 кг/л;
во-вторых, в качестве окислителя для обеззараживания воды используют йод с общим содержанием его в фильтре-сорбенте 0,5...0,8 мас.% и закрепленный на фильтре-сорбенте по всему объему;
в-третьих, окисление проводят совместно с гетерогенным катализом на углеродно-диоксимаргацевом катализаторе, который состоит из углеродного носителя и двуокиси марганца МnО при содержании его в углеродном носителе 1,0. ..1,5 мас.%, при этом соотношение общего содержания йода в сорбционно-окислительном фильтре и двуокиси марганца (по металлу) в катализаторе должно быть меньше или равно 1,0,
в-четвертых, фильтрацию воды проводят со скоростью 10...20 мл/мин.

Введение новых операций, а также особые условия выполнения уже имеющихся и новых операций позволяют существенно повысить эффективность процесса очистки и обеззараживания воды. При этом в результате предложенной обработки качество очищенной воды соответствует требованиям ГОСТ 2874-82 и СанПиНа 2.1.4559-96 "Вода питьевая".

Возможность осуществления данного способа подтверждается нижеприведенным описанием проведенной заявителем серии экспериментов по очистке и обеззараживанию воды заявленным способом.

Как известно, обеззараживание воды является основной стадией водоподготовки, особенно при использовании воды из открытых природных водоемов. На примере хлорирования как наиболее близком к предлагаемому в заявляемом способе приеме обеззараживания рассмотрим процесс инактивации бактерий.

Для описания процесса инактивации колиформ при хлорировании воды в настоящее время используются различные эмпирические и полуэмпирические модели.

Одной из наиболее распространенных моделей является

где - коэффициент выживаемости бактерий;
No, Ni - коли-индекс исходной воды и в момент времени t;
n - константа скорости дезинфекции;
b - коэффициент резистентности бактерий, мг•мин/л;
с - концентрация активного хлора в воде, мг/л.

Как видно из уравнения, одним из существенных факторов, влияющих на результат процесса обеззараживания, является степень начального смешения хлора с водой, при этом сам процесс проходит по меньшей мере в две основные стадии: быстрое обеззараживание на первых минутах контакта и более медленное - в последующие периоды.

Кроме того, известно, что инактивация бактерий начинается не сразу, а спустя некоторое время (время "бездействия") после ввода хлора.

Следовательно, для интенсификации процесса обеззараживания необходимо свести до минимума величину времени "бездействия" и продлить время контакта вирусов и бактерий с окислителем.

Поэтому для достижения этой цели в заявляемом способе предлагается, во-первых, для обеззараживания воды использовать йод, который, являясь окислителем, обладает сильными антимикробными свойствами, и, во-вторых, закрепить окислитель (йод) на инертном пористом носителе с высокоразвитой поверхностью микропор. В качестве инертного носителя было выбрано углеграфитное волокно, как и для сорбционного фильтра.

В этом случае контакт вирусов и бактерий с окислителем будет проходить в стационарных условиях, т. е. биологические загрязнители, которые транзитом прошли через многослойную систему фильтров-сорбентов, поступают на сорбционно-окислительный фильтр, где окисляются йодом.

Как известно, растворимость йода в воде невысокая и составляет около 0,3 г/л. При растворении йода в воде образуются йодистоводородная и йодноватистая кислоты, которые являются сильными окислителями

Продукты диссоциации хорошо удерживаются на углеродном сорбенте. В химизме окисления загрязнителей, в данном случае йодом, важную роль играет сорбция. Благодаря ей на углеграфитовом волокне, на которое наносится йод, создается увеличение концентрации реагирующих частиц, что ведет к ускорению реакции.

Однако несравненно более важным фактором является повышение химической активности сорбционных веществ по сравнению с обычным состоянием в растворе. В результате чего, соответственно, уменьшается время "бездействия" и увеличивается скорость протекания реакции, что приводит к увеличению эффективности не только обеззараживания, но и очистки воды.

В динамических условиях из-за ограниченного времени контакта загрязнителей с окислителем, а также из-за гидродинамического давления возможны не только неполное окисление органических веществ, но и отрыв ионов йода и его соединений с сорбента.

Для полного окисления органических веществ (доокисления) и улавливания ионов йода и его соединений сразу после сорбционно-окислительного слоя устанавливается катализатор. Доокисление загрязнителей идет за счет гетерогенного катализа на углеродно-диоксимарганцевом катализаторе. Катализатор состоит из неорганического носителя, изготовленного из углеволокнистого материала, имеющего пористую структуру с площадью внутренней поверхности пор 100. . . 200 м2/г и двуокиси марганца МnО с общим содержанием его в носителе 1,0. ..1,5 маc.%, при этом соотношение общего содержания йода в сорбционно-окислительном фильтре и двуокиси марганца (по металлу) в катализаторе должно быть меньше или равно 1,0.

Завершающим, финишным, этапом в предлагаемом способе очистки и обеззараживания воды является фильтрация воды через второй сорбционный фильтр, позволяющий предотвратить случайный проскок загрязнителей к потребителю и обеспечивающий гарантированное получение экологически чистой воды со скоростью фильтрации воды 10...20 мл/мин.

Влияние содержания в сорбенте йода на эффективность очистки и обеззараживания воды представлено в табл. 1.

Результаты анализов по очистке и обеззараживанию воды представлены в табл. 2, 3, 4.

Использование предлагаемого изобретения позволяет:
1. Существенно повысить эффективность процесса очистки и обеззараживания воды, в первую очередь, путем существенного повышения степени очистки.

2. Повысить качество очищенной воды за счет обеспечения возможности оптимального подбора системы фильтров-сорбентов.

3. Значительно снизить габаритные размеры системы водоподготовки и увеличить ресурс ее работы.

4. Существенно снизить затраты на изготовление и эксплуатацию системы водоподготовки.

Похожие патенты RU2203228C2

название год авторы номер документа
СПОСОБ ПОДГОТОВКИ ПИТЬЕВОЙ ВОДЫ И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2005
  • Коноплева Галина Васильевна
  • Лаврентьев Владимир Геннадьевич
RU2297389C2
СПОСОБ ОБЕЗЗАРАЖИВАНИЯ ПИТЬЕВОЙ ВОДЫ (ВАРИАНТЫ) 2000
  • Пименов А.В.
  • Митилинеос А.Г.
  • Шмидт Джозеф Львович
RU2172720C1
СПОСОБ ОЧИСТКИ И РЕКУЛЬТИВАЦИИ СЕЛЬСКОХОЗЯЙСТВЕННЫХ ЗЕМЕЛЬ 2002
  • Черняховский Д.А.
RU2210438C1
БАКТЕРИЦИДНАЯ ДОБАВКА ДЛЯ СОРБЕНТА И СОРБЕНТ ДЛЯ ОЧИСТКИ ВОДЫ 2002
  • Пименов А.В.
  • Митилинеос А.Г.
RU2221641C2
СПОСОБ ГЛУБОКОЙ ОЧИСТКИ И ОБЕЗЗАРАЖИВАНИЯ ПРИРОДНЫХ ВОД, А ТАКЖЕ ВОД, СОДЕРЖАЩИХ АНТРОПОГЕННЫЕ И ТЕХНОГЕННЫЕ ЗАГРЯЗНЕНИЯ 2013
  • Журба Михаил Григорьевич
  • Говоров Олег Борисович
  • Говорова Жанна Михайловна
RU2554575C2
СПОСОБ ПОВЫШЕНИЯ ПЛОДОРОДИЯ СЕЛЬСКОХОЗЯЙСТВЕННЫХ ЗЕМЕЛЬ 2003
  • Черняховский Д.А.
RU2257044C2
СРЕДСТВО ДЛЯ ОБЕЗЗАРАЖИВАНИЯ ПИТЬЕВЫХ И СТОЧНЫХ ВОД 2002
  • Пилат Т.Л.
RU2205155C1
СПОСОБ ГЛУБОКОЙ ОЧИСТКИ ВОДЫ 2004
  • Гаврилов Лев Николаевич
  • Мартынов Георгий Павлович
RU2281256C1
СПОСОБ ПОЛУЧЕНИЯ РАЗВЕРНУТОГО ГРАФИТА И СОРБЕНТ ИЗ РАЗВЕРНУТОГО ГРАФИТА, ПОЛУЧЕННОГО ЭТИМ СПОСОБОМ 2000
  • Мишенин И.В.
RU2186728C2
МНОГОСТУПЕНЧАТЫЙ СПОСОБ ГЛУБОКОЙ ОЧИСТКИ ВОДЫ 2001
  • Гутенев В.В.
  • Котенко А.В.
  • Монтвила О.И.
  • Преображенский А.В.
  • Черный А.П.
RU2188165C1

Иллюстрации к изобретению RU 2 203 228 C2

Реферат патента 2003 года СПОСОБ ОЧИСТКИ И ОБЕЗЗАРАЖИВАНИЯ ВОДЫ

Способ предназначен для очистки и обеззараживания воды из любых источников. Способ заключается в том, что очищаемую воду последовательно пропускают через механический фильтр, первый сорбционный фильтр, сорбционно-окислительный фильтр, углеродно-диоксимарганцевый катализатор и наконец через второй сорбционный фильтр, при этом первый сорбционный фильтр, сорбционно-окислительный фильтр и второй сорбционный фильтр выполнены из углеграфитовых волокнистых материалов с высокоразвитой поверхностью микропор, причем площадь внутренней поверхности пор составляет 100...200 м2/г, а плотность упаковки первого и второго сорбционных фильтров составляет 0,01 кг/л. В качестве окислителя для обеззараживания воды используют йод с общим содержанием его в фильтре-сорбенте 0,5...0,8 мас.% и закрепленный на фильтре-сорбенте по всему объему. Окисление проводят совместно с гетерогенным катализом на углеродно-диоксимарганцевом катализаторе, который состоит из углеродного носителя и двуокиси марганца при содержании его в углеродном носителе 1,0... 1,5 мас. %, при этом соотношение общего содержания йода в сорбционно-окислительном фильтре и двуокиси марганца (по металлу) в катализаторе должно быть меньше или равно 1,0. Достигается повышение степени очистки воды и увеличение ресурса работы установки для ее очистки. 1 з.п. ф-лы, 4 табл.

Формула изобретения RU 2 203 228 C2

1. Способ очистки и обеззараживания воды, заключающийся в том, что очищаемую воду подают в сорбционный фильтр, содержащий фильтр-сорбент, отличающийся тем, что воду последовательно пропускают через механический фильтр, первый сорбционный фильтр, сорбционно-окислительный фильтр, углеродно-диоксимарганцевый катализатор и, наконец, через второй сорбционный фильтр, при этом первый сорбционный фильтр, сорбционно-окислительный фильтр и второй сорбционный фильтр выполнены из углеграфитовых волокнистых материалов с высокоразвитой поверхностью микропор, причем площадь внутренней поверхности пор составляет 100. . .200 м2/г, а плотность упаковки первого и второго сорбционных фильтров составляет 0,01 кг/л; в качестве окислителя для обеззараживания воды используют йод с общим содержанием его в фильтре-сорбенте 0,5...0,8 мас.% и закрепленный на фильтре-сорбенте по всему объему; окисление проводят совместно с гетерогенным катализом на углеродно-диоксимарганцевом катализаторе, который состоит из углеродного носителя и двуокиси марганца при содержании его в углеродном носителе 1,0...1,5 мас.%, при этом соотношение общего содержания йода в сорбционно-окислительном фильтре и двуокиси марганца (по металлу) в катализаторе должно быть меньше или равно 1,0. 2. Способ очистки и обеззараживания воды, отличающийся тем, что фильтрацию воды проводят со скоростью 10...20 мл/мин.

Документы, цитированные в отчете о поиске Патент 2003 года RU2203228C2

УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ ПИТЬЕВОЙ ВОДЫ 1991
  • Беличенко А.С.
  • Волков В.Г.
  • Кирьянова Л.Ф.
  • Маслюков А.П.
  • Матюшин Г.А.
  • Рахманин Ю.А.
RU2008273C1
СПОСОБ ОЧИСТКИ СТОЧНЫХ ВОД ОТ РАСТВОРИМЫХ СОЕДИНЕНИЙ РТУТИ 1997
  • Федонина В.Ф.
RU2114065C1
РАЗМЫКАЮЩИЙ БЛОК ВЫСОКОВОЛЬТНОГО СИЛОВОГО ВЫКЛЮЧАТЕЛЯ 2003
  • Новаковски Анджей
RU2309478C2
ЕР 0576752 А1, 05.01.1994
Рессорный лист 1983
  • Комаров А.Н.
  • Дроздов Б.Я.
  • Зезюлинский А.А.
  • Лебедик Г.Л.
  • Зема В.Е.
  • Коваленко С.В.
  • Недорезов В.А.
  • Литвин А.Н.
  • Обловацкий А.К.
  • Яценко В.П.
  • Катунин А.Н.
SU1373056A2

RU 2 203 228 C2

Авторы

Коноплёва Г.В.

Даты

2003-04-27Публикация

2001-02-16Подача