ЛИТЕЙНАЯ СТАЛЬ Российский патент 2003 года по МПК C22C38/44 

Описание патента на изобретение RU2203344C2

Настоящее изобретение относится к области металлургии литейных сталей судового и общемашиностроительного назначения, содержащих углерод, марганец, кремний, никель, медь, хром, молибден.

В настоящее время для изготовления литых деталей (стеллажей холодильника под блюмсы, стрелок для стапельных поездов, штамповой оснастки и др.), работающих под действием статических и динамических нагрузок, к которым предъявляются требования по прочности и вязкости, применяются конструкционные нелегированные стали марок 25Л, 35Л, 45Л.

Указанные стали, обладая невысокими характеристиками прочности и вязкости, не обеспечивают требуемую надежность и долговечность деталей при эксплуатации.

Наиболее близкой по требуемым механическим свойствам к заявляемой стали является сталь марки 12ДН2ФЛ по ГОСТ 977-88, содержащая, мас.%:
Углерод - 0,08-0,16
Марганец - 0,4-0,9
Кремний - 0,2-0,4
Никель - 1,8-2,2
Медь - 1,2-1,5
Ванадий - 0,08-0,15
Хром - до 0,3
Железо - Остальное
Фосфор и сера - До 0,035 каждого
Указанная сталь обладает высокими характеристиками прочности (σ0,2≥580 МПа, σв≥725 МПа).

Однако имеет ряд недостатков:
- обладает недостаточно высокими характеристиками вязкости и пластичности (KVo≥39 Дж, δ5≥12%), что приводит к снижению долговечности изделий, работающих под воздействием ударных нагрузок и при отрицательных температурах;
- имеет пониженную жидкотекучесть, а также склонна к образованию горячих и холодных трещин, являющихся концентраторами напряжений, вызывающих разрушение деталей при эксплуатации.

Целью настоящего изобретения является создание литейной стали, обладающей достаточной прочностью и повышенной вязкостью, хорошей жидкотекучестью и высокой трещиноустойчивостью при изготовлении отливок, а также высокой сопротивляемостью хрупкому разрушению.

Одним из способов повышения вязкости и снижения склонности литейной стали перлитного класса к хрупким разрушениям является обеспечение мелкодисперсной феррито-перлитной структуры, что достигается легированием марганцовистых сталей никелем и снижением содержания вредных примесей.

На основании проведенных работ установлено, что поставленная цель достигается за счет повышения в марганценикелевой стали содержания углерода, никеля, ограничения содержания кремния и меди, исключения из состава ванадия и дополнительного введения молибдена, а также снижения содержания вредных примесей серы и фосфора.

Предлагается сталь, содержащая, мас.%:
Углерод - 0,17-0,22
Кремний - 0,17-0,37
Марганец - 0,40-0,70
Никель - 3,20-4,50
Медь - 0,70-1,00
Молибден - 0,38-0,50
Хром - 0,3-0,4
Железо - Остальное
Сталь может содержать примеси, мас.%: сера - не более 0,025; фосфор - не более 0,025.

Условное обозначение стали - 20Н3ДМЛ.

Предлагаемая сталь исследовалась на металле 5 промышленных плавок и 5 лабораторных по следующим характеристикам:
- механические свойства проверены на 3 промышленных и 5 лабораторных плавках;
- оценка сопротивляемости хрупкому разрушению при пониженных температурах проводилась на 3 промышленных и 5 лабораторных плавках;
- определение трещиноустойчивости при затвердевании и охлаждении металла в форме и жидкотекучести при заливке металла проводилось на 3 лабораторных плавках.

Для сравнения исследовались механические свойства, сопротивляемость хрупкому разрушению при пониженных температурах и литейные характеристики известной стали-прототипа (табл. 1).

Определение механических свойств и сопротивляемости хрупкому разрушению при пониженной температуре (Тк) проводились по ГОСТ 1497-84, ГОСТ 9454-78, литейные свойства - по методике Санкт-Петербургского государственного технического университета.

По сравнению с известной сталью-прототипом предлагаемая сталь обладает следующими преимуществами:
1. Высокой вязкостью при одинаковом уровне прочности, достигаемой за счет повышения в стали содержания никеля (до 3,2-4,5%) и снижения содержания меди (до 0,7-1,00%), серы и фосфора (до 0,025%).

Повышение содержания никеля укрупняет структуру стали при первичной кристаллизации, но благодаря своему влиянию на понижение температуры и скорости превращения аустенита способствует резкому измельчению структуры при вторичной кристаллизации, что обеспечивает наибольшую дисперсность элементов структуры (ферритокарбидной смеси-сорбита), обладающей повышенной вязкостью. Ограничение в стали содержания меди до 1% снижает склонность к дисперсионному твердению, что способствует повышению вязкости металла.

Снижение содержания серы и фосфора уменьшает количество неметаллических включений, располагающихся по границам зерен, что повышает межкристаллическую прочность, пластичность и вязкость металла.

2. Хорошей прокаливаемостью, что обеспечивает равномерность свойств по сечению массивных отливок и высокой сопротивляемостью хрупкому разрушению при пониженных температурах благодаря повышенному содержанию никеля и введению молибдена, снижающего склонность стали к отпускной хрупкости.

3. Более высокой трещиноустойчивостью в процессе затвердевания за счет снижения содержания серы, устраняющего возможность образования легкоплавких оксисульфидных пленок, располагающихся в межкристаллитных областях в районе высоких температур, повышая пластичность и сопротивление стали к образованию горячих трещин.

Указанные преимущества позволяют использовать предлагаемую сталь для крупных отливок ответственного назначения, работающих под воздействием ударных нагрузок, а также в условиях Крайнего Севера при пониженных температурах.

В термически обработанном состоянии структура стали представляет мелкодисперсную феррито-перлитную смесь (сорбит). Сталь обеспечивает следующий уровень механических свойств:
σ0,2≥610 МПа, σв≥700 МПа, δ5≥20%, ψ≥50%, KVo≥100 Дж.

Критическая температура перехода из вязкого в хрупкое состояние при динамическом нагружении (Тк) составляет 50oС.

Предлагаемая сталь обладает хорошей технологичностью при литье и может быть использована для крупных отливок сложной конфигурации сечением до 300 мм. При выплавке предлагаемой стали в качестве шихты могут использоваться отходы легированных никелем сталей типа АЛ и АК, за счет чего достигается большая экономия легирующих элементов, обеспечивающая значительный экономический эффект.

Похожие патенты RU2203344C2

название год авторы номер документа
СТАЛЬ ДЛЯ ФАСОННЫХ ОТЛИВОК 2000
  • Хомякова Н.Ф.
  • Камышина К.П.
  • Петров Ю.Н.
  • Зарубин Г.А.
  • Смирнова Г.П.
RU2183689C2
ФЕРРИТО-ПЕРЛИТНАЯ ЛИТЕЙНАЯ СТАЛЬ 1994
  • Чащинов В.А.
  • Шандыба Г.А.
  • Цыганко Л.К.
  • Камышина К.П.
  • Володин В.И.
  • Свешников Е.П.
  • Смелов В.И.
RU2085610C1
СВАРИВАЕМАЯ СТАЛЬ 1992
  • Легостаев Ю.Л.
  • Горынин И.В.
  • Малышевский В.А.
  • Игнатов В.А.
  • Семичева Т.Г.
  • Круглова А.А.
  • Купчиков Г.Н.
RU2009261C1
ДВУХСЛОЙНАЯ ВЫСОКОПРОЧНАЯ КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ 1991
  • Горынин И.В.
  • Малышевский В.А.
  • Легостаев Ю.Л.
  • Семичева Т.Г.
  • Васильев В.Г.
  • Чернышев В.В.
  • Соболев Ю.В.
  • Кормилицин Ю.Н.
  • Липухин Ю.В.
  • Данилов Л.И.
RU2016912C1
СТАЛЬ 1995
  • Васильев В.Г.
  • Владимиров Н.Ф.
  • Горынин И.В.
  • Легостаев Ю.Л.
  • Малышевский В.А.
  • Никитина Л.Б.
  • Семичева Т.Г.
  • Соболев Ю.В.
  • Соколов Б.В.
  • Соколов О.Г.
  • Сулягин В.Р.
  • Тынтарев А.М.
RU2078845C1
КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ 1997
  • Горынин И.В.
  • Чащинов В.А.
  • Лемус Н.Д.
  • Камышина К.П.
  • Цыганко Л.К.
  • Гольдфарб А.И.
  • Сотников А.А.
  • Шмарин И.С.
  • Чижик Т.А.
  • Сергеев Е.Д.
  • Ривкин С.И.
  • Грибанов Н.Н.
RU2119548C1
АУСТЕНИТНАЯ КОРРОЗИОННОСТОЙКАЯ СТАЛЬ 1990
  • Горынин И.В.
  • Камышина К.П.
  • Кукушкина Н.К.
  • Лемус Н.Д.
  • Петров Ю.Н.
  • Томушкина С.А.
  • Чащинов В.А.
  • Арсов Янко Боянов[Bg]
  • Иванов Георги Минчев[Bg]
  • Петров Петр Костадинов[Bg]
  • Дачкова Маргарита Благоева[Bg]
  • Дренски Росен Димитров[Bg]
  • Илиев Тодор Русев[Bg]
  • Новицки Владимир Николаевич[Bg]
RU2009259C1
ХЛАДОСТОЙКАЯ СТАЛЬ ВЫСОКОЙ ПРОЧНОСТИ 2011
  • Галкин Виталий Владимирович
  • Денисов Сергей Владимирович
  • Демидченко Юрий Павлович
  • Малышевский Виктор Андреевич
  • Семичева Тамара Григорьевна
  • Хлусова Елена Игоревна
  • Голосиенко Сергей Анатольевич
  • Орлов Виктор Валерьевич
  • Маслеников Александр Витальевич
  • Милейковский Андрей Борисович
RU2458176C1
СТАЛЬ ДЛЯ КОРПУСНЫХ КОНСТРУКЦИЙ АТОМНЫХ ЭНЕРГОУСТАНОВОК 2008
  • Горынин Игорь Васильевич
  • Карзов Георгий Павлович
  • Теплухина Ирина Владимировна
  • Грекова Ирина Ивановна
  • Савельева Ирина Геннадьевна
  • Бурочкина Ирина Михайловна
RU2397272C2
ВЫСОКОПРОЧНАЯ ХЛАДОСТОЙКАЯ СВАРИВАЕМАЯ ТОЛСТОЛИСТОВАЯ СТАЛЬ 2009
  • Горынин Игорь Васильевич
  • Рыбин Валерий Васильевич
  • Малышевский Виктор Андреевич
  • Баранов Александр Владимирович
  • Легостаев Юрий Леонидович
  • Владимиров Николай Федорович
  • Семичева Тамара Григорьевна
  • Хлусова Елена Игоревна
  • Малахов Николай Викторович
  • Бусыгин Вячеслав Васильевич
  • Голосиенко Сергей Анатольевич
RU2419673C2

Иллюстрации к изобретению RU 2 203 344 C2

Реферат патента 2003 года ЛИТЕЙНАЯ СТАЛЬ

Изобретение относится к области металлургии литейных сталей, используемых в частности в судостроении, при изготовлении массивных литых деталей, работающих под воздействием статических и динамических нагрузок. Техническим результатом изобретения является повышение вязкости, пластичности и трещиноустойчивости при затвердевании металла отливок и сопротивляемости хрупким разрушениям. При эксплуатации повышается надежность и срок службы изделий. Литейная сталь содержит компоненты в следующем соотношении, мас.%: углерод 0,17-0,22; кремний 0,17-0,37; марганец 0,40-0,70; никель 3,20-4,50; медь 0,70-1,00; молибден 0,38-0,50; хром 0,3-0,4; железо остальное. Содержание серы и фосфора не должно превышать по 0,025% каждого или в сумме не более 0,04%. Указанная сталь после термической обработки имеет предел текучести не менее 610 МПа; предел прочности - 700 МПа; относительное удлинение - 20%; относительное сужение - 50%; работа удара при температуре 0oС - 100 Дж. 1 табл.

Формула изобретения RU 2 203 344 C2

Литейная сталь, содержащая углерод, кремний, марганец, хром, никель, медь, серу, фосфор, железо, отличающаяся тем, что она дополнительно содержит молибден при следующем соотношении компонентов, мас.%:
Углерод - 0,17 - 0,22
Марганец - 0,4 - 0,7
Кремний - 0,17 - 0,37
Хром - 0,3 - 0,4
Никель - 3,2 - 4,5
Медь - 0,7 - 1,0
Молибден - 0,38 - 0,50
Сера - 0,011 - 0,025
Фосфор - 0,009 - 0,025
Железо - Остальное
при этом суммарное содержание серы и фосфора не должно превышать 0,04%.

Документы, цитированные в отчете о поиске Патент 2003 года RU2203344C2

Способ гальванического снятия позолоты с серебряных изделий без заметного изменения их формы 1923
  • Бердников М.И.
SU12A1
В.Г
Сорокина
- М.: Интермет инжиниринг, 2001, с
Электрический быстродействующий затвор для аппарата, передающего изображения на расстояние 1921
  • Гедройц Н.А.
  • Кузин С.С.
SU529A1
US 5639421 А, 17.06.1997
ФЕРРИТО-ПЕРЛИТНАЯ ЛИТЕЙНАЯ СТАЛЬ 1994
  • Чащинов В.А.
  • Шандыба Г.А.
  • Цыганко Л.К.
  • Камышина К.П.
  • Володин В.И.
  • Свешников Е.П.
  • Смелов В.И.
RU2085610C1
КОНСТРУКЦИОННАЯ СТАЛЬ 1992
  • Сандомирский М.М.
  • Титова Т.И.
  • Шульган Н.А.
  • Беляева Л.И.
  • Галенко И.П.
  • Ривкин С.И.
  • Ключарев В.Е.
  • Борисов В.И.
  • Хазак В.И.
  • Орестов А.М.
  • Семернина И.Ф.
  • Акимов Э.Г.
RU2042731C1
СТАЛЬ 1995
  • Васильев В.Г.
  • Владимиров Н.Ф.
  • Горынин И.В.
  • Легостаев Ю.Л.
  • Малышевский В.А.
  • Никитина Л.Б.
  • Семичева Т.Г.
  • Соболев Ю.В.
  • Соколов Б.В.
  • Соколов О.Г.
  • Сулягин В.Р.
  • Тынтарев А.М.
RU2078845C1
SU 1612619 А1, 10.02.1997
Сталь 1990
  • Кузнецов Виктор Валентинович
  • Сосипатров Виктор Тимофеевич
  • Урюпин Григорий Павлович
  • Кулешов Владимир Данилович
  • Славов Владимир Ионович
  • Степанов Александр Александрович
  • Белосевич Владимир Константинович
SU1749303A1

RU 2 203 344 C2

Авторы

Чащинов В.А.

Камышина К.П.

Петров Ю.Н.

Зарубин Г.А.

Цыганко Л.К.

Шандыба Г.А.

Соколов В.Т.

Томаш В.И.

Широков В.К.

Хлудов А.А.

Кононов В.А.

Хая В.Е.

Даты

2003-04-27Публикация

2001-03-30Подача