АУСТЕНИТНАЯ КОРРОЗИОННОСТОЙКАЯ СТАЛЬ Российский патент 1994 года по МПК C22C38/38 

Описание патента на изобретение RU2009259C1

Изобретение относится к металлургии сталей, содержащих углерод, хром, марганец, кремний, ванадий и азот, а также добавки иттрия и церия, и используемых в судостроении, в частности, при производстве гребных винтов, в том числе для быстроходных судов на подводных крыльях (СПК), и в других отраслях промышленности при изготовлении литых деталей сложной конфигурации, эксплуатирующихся в морской воде под воздействием значительных статических и циклических нагрузок.

В настоящее время для изготовления деталей ответственного назначения, работающих в морской воде, применяются коррозионностойкие стали различных классов: мартенситного, мартенситно-ферритного, аустенитно-ферритного, аустенитного и мартенситно-аустенитно-ферритного. При этом стали мартенситного, мартенситно-ферритного и мартенситно-аустенитно-ферритного классов, как правило, обладают недостаточной коррозионной стойкостью при относительно высоком уровне механических свойств и сопротивляемости хрупким разрушениям, а стали аустенитного и аустенитно-ферритного классов при высокой коррозионной стойкости имеют низкие прочностные характеристики.

Уровень коррозионной усталости и сопротивляемости кавитационно-эрозионным разрушениям имеющихся сталей указанных классов недостаточно высок и не позволяет обеспечивать требуемый ресурс работы изделий, в частности, гребных винтов. Большинство используемых сталей содержит повышенное количество остродефицитных никеля и молибдена. Одним из способов повышения прочностных свойств коррозионностойких сталей аустенитного класса и сокращения использования для их производства никеля является комплексное легирование хромосодержащих сталей марганцем и азотом выше его равновесного содержания в стали.

В настоящее время разработаны промышленные методы и оборудование для введения в сталь повышенного содержания азота (до 1% ). Известен ряд литейных хромомарганцевых сталей, легированных азотом, обладающих высоким уровнем пластичности, вязкости и сопротивляемости коррозионным разрушениям.

Наиболее близкой по составу ингредиентов к заявляемой стали является сталь, содержащая, мас. % : Углерод До 0,1 Марганец 7,0-9,0 Кремний До 0,5 Хром 15,0-17,0 Никель 3,6-4,5 Азот 0,22-0,32 Медь 0,8-1,3 Ванадий 0,6-1,0 Железо Остальное
Сталь может содержать примеси, мас. % : Сера Не более 0,02 Фосфор Не более 0,035
Сталь-прототип обладает достаточно высокими характеристиками пластичности и вязкости (δ5≥ 25% , КСV-10 ≥ 80 Дж/см2), сопротивляемостью коррозионному растрескиванию (β = = 0,75 , где σмв - напряжение разрушения образца в морской воде, σв - напряжение разрушения образца на воздухе), не склонна к межкристаллитной коррозии.

Однако сталь имеет ряд существенных недостатков: обладает недостаточно высокими характеристиками прочности, коррозионной усталости и кавитационной стойкости, что приводит к снижению долговечности и надежности изделий, эксплуатирующихся в условиях высоких статических и циклических нагрузок; склонна к образованию горячих трещин в отливках в процессе затвердевания металла, которые не всегда могут быть выявлены, и являются концентраторами напряжений, приводящими к разрушению деталей, подвергающихся в процессе эксплуатации циклическим нагрузкам; имеем в своем составе дефицитный никель.

Целью изобретения является создание литейной высокопрочной стали, обладающей оптимальным сочетанием прочности, пластичности, вязкости, коррозионной усталости и сопротивляемости кавитационным разрушениям, предназначенной для изготовления тонкостенных деталей сложной конфигурации, работающих в морской воде.

На основании проведенных работ установлено, что поставленная цель достигается за счет дополнительного введения в хромомарганцовистую сталь азота до содержания выше равновесного, иттрия, церия, повышения содержания хрома и марганца.

Предлагается сталь содержит, мас. % : Углерод 0,04-0,07 Кремний 0,02-0,6 Марганец 9,5-11,0 Хром 17,0-18,5 Азот 0,50-0,70 Медь 0,9-1,2 Ванадий 0,05-0,1 Церий 0,01-0,05 Иттрий 0,01-0,05
Железо Остальное
Сталь может содержать примеси, мас. % : Сера Не более 0,02 Фосфор Не более 0,025
Для обеспечения содержания азота выше равновесного (0,50-0,70% ) выплавка стали и заливка форм производилась в автоклавах под избыточным давлением азота до 16 атм.

Предлагаемая сталь исследована на металле лабораторных и промышленных плавок по следующим характеристикам: механические свойства проверены на 50 лабораторных и 3 промышленных плавках; сопротивление коррозионной усталости, межкристаллитной коррозии, кавитационным разрушениям и коррозии под напряжением исследовалось на 5 лабораторных и 3 промышленных плавках.

Для сравнения исследовались механические свойства, сопротивляемость коррозионной усталости, кавитационным разрушениям, склонности к МКК и коррозионному растрескиванию известной стали-прототипа (таблица).

Определение механических свойств, коррозионной усталости, склонности к МКК проводились в соответствии с требованиями ГОСТ 1497-84, ГОСТ 9454-78, ГОСТ 25502-79 и ГОСТ 6032-75, а кавитационной стойкости и сопротивляемости коррозионному растрескиванию - по методике ЦНИИКМ "Прометей".

По сравнению с известной сталью-прототипом предлагаемая сталь обладает следующими преимуществами:
Более высоким уровнем прочностных характеристик, коррозионной усталости и кавитационной стойкости за счет повышения содержания азота выше равновесного (до 0,5-0,7% ), хрома (до 17,0-18,5% ) и марганца (до 9,5-11,0% ). Из состава стали выведен никель в связи с его высокой стоимостью и дефицитностью. При этом вводимое количество азота приводит к более эффективному упрочнению твердого раствора, а следовательно, и повышению прочностных характеристик стали, по сравнению со сталью-прототипом, а также к значительному повышению стойкости стали против питтинговой коррозии. Увеличение содержание азота выше указанных пределов приводит к снижению характеристик вязкости разрушения при деформационном старении, хрома - к снижению ударной вязкости, а марганца - коррозионной стойкости, и как следствие, коррозионной усталости.

Более высокой сопротивляемостью образованию горячих трещин в отливках в процессе затвердевания металла, благодаря очищению границ зерен за счет введения в сталь церия и иттрия в количестве 0,01-0,05 мас. % . Повышение содержания церия и иттрия в стали выше указанных пределов ведет к ее загрязнению неметаллическими включениями, что снижает уровень механических свойств.

Указанные преимущества позволяют использовать предлагаемую сталь для изделий ответственного назначения, имеющих сложную конфигурацию с наличием развитых поверхностей и малых толщин стенок, работающих в морской воде под воздействием высоких ударных и циклических нагрузок. Для получения требуемых механических свойств отливки из предлагаемой стали подвергаются аустенизации при температуре 1000-1050оС с охлаждением на воздухе.

В термически обработанном состоянии структура стали представляет аустенит с равномерно распределенными по границам зерен карбонитридами. Приведенный выше режим термической обработки обеспечивает следующий уровень механических свойств стали: σ0,2≥ 400 МПа, σв≥ 740 МПа, δ5≥ 30% , КV-10 ≥ 75 Дж. Критическая температура перехода из вязкого в хрупкое состояние при динамическом (Тк) нагружении ниже минус 100оС и при статическом изгибе (Ткдс) ниже минус 60оС. Сталь имеет высокую стойкость против питтинговой, язвенной и щелевой коррозии в морской воде.

Условный предел коррозионной усталости (σ-1к) при испытании в морской воде образцов диаметром 10 мм с надрезом (коэффициент концентрации ≈ 5) на базе 100x x106 циклов составляет 220-230 МПа, а известной стали-прототипа 140-160 МПа. Это одна из основных характеристик стали, входящих в расчет на циклическую прочность ряда ответственных деталей, например, гребных винтов, и ее повышение существенно увеличивает срок службы и эксплуатационную надежность этих изделий.

Предлагаемая сталь обладает хорошими литейными свойствами и может использоваться для отливок любой массы и сложности.

При использовании предлагаемой стали для гребных винтов СПК (взамен применяемой в настоящее время стали) может быть получен значительный экономический эффект за счет повышения срока службы винтов в 3-5 раз и снижения затрат на их ремонт в среднем на 30% . (56) Авторское свидетельство СССР N 285772, кл. С 22 С 38/58, 1978.

Похожие патенты RU2009259C1

название год авторы номер документа
КОРРОЗИОННО - СТОЙКАЯ СТАЛЬ 1997
  • Чащинов В.А.
  • Лемус Н.Д.
  • Камышина К.П.
  • Цыганко Л.К.
  • Шевченко В.С.
  • Гольдфарб А.И.
  • Сотников А.А.
  • Чижик Т.А.
  • Сергеев Е.Д.
  • Ривкин С.И.
  • Грибанов Н.Н.
  • Соболев Ю.В.
RU2125114C1
ФЕРРИТО-ПЕРЛИТНАЯ ЛИТЕЙНАЯ СТАЛЬ 1994
  • Чащинов В.А.
  • Шандыба Г.А.
  • Цыганко Л.К.
  • Камышина К.П.
  • Володин В.И.
  • Свешников Е.П.
  • Смелов В.И.
RU2085610C1
КОРРОЗИОННОСТОЙКАЯ АУСТЕНИТНАЯ СТАЛЬ 1993
  • Сосенушкин Е.М.
  • Малышевский В.А.
  • Беляев В.А.
  • Калинин Г.Ю.
  • Голуб Ю.В.
  • Петров К.В.
  • Пермовская А.П.
  • Ямпольский В.Д.
  • Яськин В.Н.
RU2039122C1
ДВУХСЛОЙНАЯ ВЫСОКОПРОЧНАЯ КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ 1991
  • Горынин И.В.
  • Малышевский В.А.
  • Легостаев Ю.Л.
  • Семичева Т.Г.
  • Васильев В.Г.
  • Чернышев В.В.
  • Соболев Ю.В.
  • Кормилицин Ю.Н.
  • Липухин Ю.В.
  • Данилов Л.И.
RU2016912C1
КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ 2000
  • Петров Ю.Н.
  • Хомякова Н.Ф.
  • Мурунов А.И.
  • Таволжанов А.Н.
  • Левин В.Г.
RU2184793C2
КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ 1997
  • Горынин И.В.
  • Чащинов В.А.
  • Лемус Н.Д.
  • Камышина К.П.
  • Цыганко Л.К.
  • Гольдфарб А.И.
  • Сотников А.А.
  • Шмарин И.С.
  • Чижик Т.А.
  • Сергеев Е.Д.
  • Ривкин С.И.
  • Грибанов Н.Н.
RU2119548C1
СОСТАВ СВАРОЧНОЙ ЛЕНТЫ И ПРОВОЛОКИ 2000
  • Горынин И.В.
  • Карзов Г.П.
  • Галяткин С.Н.
  • Михалева Э.И.
  • Воловельский Д.Э.
  • Морозовская И.А.
  • Юрчак А.В.
  • Волков В.В.
  • Петров В.В.
  • Серебренников Г.С.
RU2188109C2
КОРРОЗИОННОСТОЙКАЯ СТАЛЬ 1993
  • Бережко Б.И.
  • Филимонов Г.Н.
  • Павлов В.Н.
  • Корюкова А.М.
  • Повышев И.А.
  • Братко Г.А.
  • Матвеев В.Г.
  • Заекин Л.П.
RU2039120C1
СТАЛЬ ДЛЯ ФАСОННЫХ ОТЛИВОК 2000
  • Хомякова Н.Ф.
  • Камышина К.П.
  • Петров Ю.Н.
  • Зарубин Г.А.
  • Смирнова Г.П.
RU2183689C2
ВЫСОКОПРОЧНАЯ КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ 2012
  • Дегтярев Александр Федорович
  • Дуб Алексей Владимирович
  • Скоробогатых Владимир Николаевич
  • Шепилов Николай Борисович
RU2493285C1

Иллюстрации к изобретению RU 2 009 259 C1

Реферат патента 1994 года АУСТЕНИТНАЯ КОРРОЗИОННОСТОЙКАЯ СТАЛЬ

Изобретение относится к металлургии сталей, используемых в судостроении, в частности, при производстве гребных винтов, в том числе для быстроходных судов на подводных крыльях (СПК), и в других отраслях промышленности при изготовлении литых деталей сложной конфигурации, эксплуатирующихся в морской воде под воздействием значительных статических и циклических нагрузок. С целью повышения прочности, сопротивляемости коррозионной усталости и кавитационной стойкости при воздействии морской воды в циклических нагрузок, сталь дополнительно содержит церий и иттрий при следующем соотношении компонентов, мас. % : углерод 0,04 - 0,07, кремний 0,02 - 0,6, марганец 9,5 - 11,0, хром 17,0 - 18,5, азот 0,50 - 0,70, медь 0,9 - 1,2, ванадий 0,05 - 0,1, церий 0,01 - 0,05, иттрий 0,01 - 0,05, железо остальное. 1 табл.

Формула изобретения RU 2 009 259 C1

АУСТЕНИТНАЯ КОРРОЗИОННОСТОЙКАЯ СТАЛЬ, содержащая углерод, кремний, марганец, хром, азот, медь, ванадий и железо, отличающаяся тем, что она дополнительно содержит церий и иттрий при следующем соотношении компонентов, мас. % :
Углерод 0,04 - 0,07
Кремний 0,02 - 0,6
Марганец 9,5 - 11,0
Хром 17,0 - 18,5
Азот 0,50 - 0,70
Медь 0,9 - 1,2
Ванадий 0,05 - 0,1
Церий 0,01 - 0,05
Иттрий 0,01 - 0,05
Железо Остальное

RU 2 009 259 C1

Авторы

Горынин И.В.

Камышина К.П.

Кукушкина Н.К.

Лемус Н.Д.

Петров Ю.Н.

Томушкина С.А.

Чащинов В.А.

Арсов Янко Боянов[Bg]

Иванов Георги Минчев[Bg]

Петров Петр Костадинов[Bg]

Дачкова Маргарита Благоева[Bg]

Дренски Росен Димитров[Bg]

Илиев Тодор Русев[Bg]

Новицки Владимир Николаевич[Bg]

Даты

1994-03-15Публикация

1990-10-11Подача