СПОСОБ ОЧИСТКИ СТОЧНЫХ ВОД ОТ ВРЕДНЫХ ПРИМЕСЕЙ, СОДЕРЖАЩИХ КАДМИЙ Российский патент 2003 года по МПК C02F9/04 C02F9/04 C02F1/28 C02F1/56 C02F103/16 

Описание патента на изобретение RU2206522C1

Изобретение относится к способам очистки многокомпонентных сточных вод от вредных примесей, в частности от кадмия, никеля, нефтепродуктов, анионных поверхностно-активных веществ в растворимой и дисперсной формах в присутствии этиленгликоля, поливинилового спирта и неорганических солей, и может быть использовано в машиностроительной и химической промышленности, в частности, при производстве химических источников тока.

Известен способ глубокой очистки сточных вод от тяжелых металлов, включающий стадию предварительной очистки, обессоливание обратным осмосом, утилизацию концентрата с выпаркой до сухого остатка и повторное использование очищенной воды, при этом предварительную очистку проводят реагентным осаждением и сорбцией на алюмосиликатах при рН 8-11, обессоливание проводят в аппарате обратного осмоса с числом ступеней концентрирования 3-5 при рН 5,5-6,5, концентрат перед выпаркой обрабатывают на алюмосиликатах при рН 8-9, причем регенерацию алюмосиликатного сорбента проводят в две стадии, а регенерацию обратноосмотических мембран проводят в режиме обессоливания при рН 8-11 в течение 2-5 ч через 12-14 дней работы (патент РФ 2085518, МПК C 02 F 9/00).

Недостатком данного способа является трудоемкость процесса, включающего несколько стадий очистки, каждая из которых характеризуется узким интервалом величины рН.

Известен способ очистки промышленных сточных вод от ионов тяжелых металлов, нефтепродуктов, СПАВ и других примесей, включающий гальванокоагуляцию с использованием гальванопар и разделение твердой и жидкой фаз, при этом перед гальванокоагуляцией проводят предварительную очистку сточных вод в усреднительной емкости, в которую направляют осадок после гальванокоагуляции, образовавшуюся смесь подвергают магнитоакустическому резонансному воздействию, а гальванокоагуляцию предварительно очищенной жидкой фазы осуществляют последовательно в два этапа, причем на первом этапе гальванопара образована из частиц кокса и железа, а на втором - из частиц кокса и алюминия (патент РФ 2161137, МПК C 02 F 1/463).

Недостатком данного способа является применение дорогостоящих железа и алюминия для осуществления гальванокоагуляции, а также его высокая энергоемкость.

Известен способ очистки промывных вод после операции нанесения гальванопокрытий, включающий непроточную многоступенчатую промывку и сорбцию на неорганических материалах, при этом в качестве сорбента используют природный дисперсный кремнезем диатомитового типа (патент РФ 2074118, МПК C 02 F 1/28).

Однако данный способ предназначен для очистки сточных вод от тяжелых металлов и неэффективен при очистке сточных вод, включающих нефтепродукты, анионные ПАВ и другие загрязнители.

Наиболее близким к предлагаемому является способ очистки сточных вод от тяжелых металлов, в том числе ионов никеля и кадмия, включающий очистку путем сорбции на композиционном сорбенте, при этом в качестве сорбента используют гальваношлам, гранулированный с полимерным связующим (патент РФ 2125972, МПК С 02 F 1/62, 1/58).

Недостатком данного способа является низкая эффективность очистки многокомпонентных сточных вод, включающих загрязнители неорганической и органической природы. Кроме того, недостатком способа является использование в качестве сорбента высокотоксичного гальваношлама.

Задачей предлагаемого способа является повышение качества очистки многокомпонентных сточных вод от вредных примесей, в частности от кадмия, никеля, нефтепродуктов, анионных поверхностно-активных веществ в растворимой и дисперсной формах в присутствии этиленгликоля, поливинилового спирта и неорганических солей при обеспечении замкнутого цикла водоснабжения.

Поставленная задача решается тем, что в способе очистки сточных вод от вредных примесей, содержащих кадмий, включающем сорбцию, согласно предлагаемому решению перед очисткой сорбцией проводят очистку флокуляцией путем введения в сточные воды катионного полиэлектролита в количестве 0,5-2,2% от концентрации сухих веществ сточной воды, при этом флокуляцию проводят в два этапа, на первом из которых осуществляют очистку от вредных примесей в дисперсном состоянии, а на втором этапе - от вредных примесей в растворенном состоянии, а в качестве сорбента используют последовательно расположенные термомодифицированный доломит и активированный уголь.

В качестве катионного полиэлектролита используют сополимер диметиламиноэтилметакрилата диметилсульфата и акриламида, содержащий не менее 80% мольных катионных групп, количество которого на первом этапе составляет 0,8-2,2%, а на втором этапе 0,5-1,5% от концентрации сухих веществ сточной воды, а очистку сорбцией осуществляют путем пропускания через сорбенты обрабатываемой воды со скоростью 0,5-1 дм3/мин, причем объемное соотношение термомодифицированного доломита и активированного угля составляет 4:1 соответственно.

При введении катионного полиэлектролита воду перемешивают до равномерного распределения в ней сополимера.

Способ осуществляется следующим образом.

Процесс очистки состоит из флокуляции загрязнителей в два этапа, что приводит к образованию крупных флокул, отстаивании системы, фильтрации надосадочной жидкости, сорбции катионов никеля и кадмия, и возврате очищенной воды в замкнутый цикл водоснабжения.

Принципиальная схема очистки представлена на чертеже.

Согласно схеме, загрязненная вода после мойки оборудования, например, производства никель-кадмиевых аккумуляторов из емкости 1 поступает в многосекционный отстойник 2. В первой секции отстойника 2 проводят флокуляцию дисперсных частиц загрязнителей катионным полиэлектролитом, содержащим 80%-мольных катионных групп, в количестве 0,8-2,2% от концентрации сухих веществ сточных вод, в результате чего происходит образование крупных флокул и быстрое их оседание. Для повышения эффективности процесса флокуляции во время введения водного раствора флокулянта сточную воду перемешивают в течении 10-20 мин до равномерного распределения макромолекул сополимера по всему объему первой секции отстойника 2. В процессе заполнения водой последующих секций отстойника 2 путем переливания из предыдущих секций в них происходит отстаивание системы. После полного заполнения отстойника 2 надосадочную жидкость периодически в автоматическом режиме перекачивают насосом 3 в промежуточную накопительную емкость 4. После заполнения емкости 4, например через 6-8 ч, в нее добавляют водный раствор флокулянта, под действием которого из надосадочной жидкости нефтепродукты и анионные поверхностно-активные вещества переходят в дисперсное состояние. Флокулянт вводят в количестве 0,5-1,5% от концентрации сухих веществ сточных вод. Систему перемешивают механической мешалкой в течение 10-20 мин и выдерживают в покое 10-14 ч. Затем надосадочную жидкость прокачивают насосом 5 через механический фильтр 6 и адсорберы 7 со скоростью 0,5-1 дм3/мин в накопительную емкость 8, откуда самотеком очищенная вода поступает в емкость 1.

При выборе флокулянта из ряда полимеров наилучший результат очистки многокомпонентных вод получен при использовании катионных полиэлектролитов, в частности сополимеров четвертичных аммониевых солей. Высокая эффективность очистки обнаружена при использовании сополимера диметиламиноэтилметакрилата диметилсульфата и акриламида с высоким содержанием катионных групп (≥80 мол. %).

Кроме того, выбор данного флокулянта обусловлен высокой растворимостью в воде, нетоксичностью, сополимерным и полиэлектролитным характером его макромолекул и высокой молекулярной массой (1х106). Оптимальная концентрация катионного полиэлектролита для каждого этапа флокуляции также определена экспериментально, выбрана из диапазона концентраций 1х10-4-1х10-2 г/дл и составляет для 1 этапа 7,5х10-4 г/дл, а для 2 этапа 5,0х10-4 г/дл.

Выбор в качестве сорбентов экологически чистых природного материала - доломита и активированного угля обеспечивает высокую эффективность очистки и экономичность способа. Причем используют термомодифицированный - путем тепловой обработки при 800-900oС в течение 6-8 ч - доломит.

Объемное соотношение доломита и активированного угля 4:1 соответственно, и скорость пропускания воды 0,5-1 дм/мин также определены экспериментально и являются оптимальными. Причем пропускание воды осуществляют последовательно сначала через доломит, затем через активированный уголь. Данные физико-химические параметры обеспечивают качественную очистку воды, соответствующую нормативам для промывных вод (см. Справочник "Гальванотехника". М.: Металлургия. 1987. -С.736).

Ниже приведены примеры для замкнутого цикла водоснабжения. После мойки оборудования в секцию отстойника с загрязненной водой и накопительную емкость с надосадочной жидкостью вводят катионный полиэлектролит, содержащий 80% мольных катионных групп в различных количествах от концентрации сухих веществ сточной воды. Тщательно перемешивают систему и оставляют в покое в течение 12 ч. Затем надосадочную жидкость прокачивают через адсорберы с заданной скоростью. Отношения концентрации флокулянта к концентрации сухих веществ сточной воды (Сфсв), соотношение сорбентов и величины скоростей прохождения (V) через сорбенты составляли (см. примеры).

Пример I. Сс.в= 0,095 г/дл; Сфс.в=0,79%(первый этап); Сфс.в=0,53% (второй этап), соотношение сорбентов 4:1; V=0,5 дм3/мин.

Пример II. Сс.в= 0,045 г/дл; Сфс.в=1,67%(первый этап); Сфс.в=1,11% (второй этап), соотношение сорбентов 4:1; V=0,8 дм3/мин.

Пример III. Сс.в= 0,034 г/дл; Сфc.в=2,2%(первый этап); Сфс.в=1,47% (второй этап), соотношение сорбентов 4:1; V=1 дм3/мин.

Результаты очистки представлены в таблице.

Таким образом, предлагаемый способ позволяет создать замкнутый цикл водоснабжения при обеспечении высокой степени очистки от вредных загрязнителей, в частности от особо экологически опасного кадмия.

Похожие патенты RU2206522C1

название год авторы номер документа
СПОСОБ РАЗРУШЕНИЯ УСТОЙЧИВЫХ КОНЦЕНТРИРОВАННЫХ МАСЛОСОДЕРЖАЩИХ ЭМУЛЬСИЙ (ВАРИАНТЫ) 2002
  • Обожин А.Н.
  • Устюжанинов В.В.
  • Китаев Ю.Б.
  • Тахаутдинов Р.С.
  • Карпов Е.В.
  • Дробный О.Ф.
RU2206367C1
СПОСОБ ОЧИСТКИ СТОЧНЫХ ВОД 2007
  • Черкасов Михаил Анатольевич
  • Фомин Владимир Михайлович
  • Климова Марина Николаевна
  • Люцко Альбина Валерьевна
RU2359921C2
СПОСОБ ПОЛУЧЕНИЯ ПИТЬЕВОЙ ВОДЫ 2001
  • Стрелков А.К.
  • Степанов С.В.
RU2206523C1
МОЮЩАЯ КОМПОЗИЦИЯ ДЛЯ ОЧИСТКИ ПОВЕРХНОСТЕЙ РАЗЛИЧНЫХ ТВЕРДЫХ ТЕЛ 2012
RU2530883C2
Способ очистки фильтрационных вод полигонов захоронения твердых бытовых отходов 2021
  • Щербинин Сергей Викторович
RU2775552C1
СПОСОБ ОЧИСТКИ ЖИРО- И БЕЛОКСОДЕРЖАЩИХ СТОЧНЫХ ВОД 2006
  • Чикунова Лина Александровна
  • Смирнов Александр Николаевич
  • Асанкин Александр Петрович
  • Градова Наталья Александровна
  • Левина Нина Владимировна
  • Дрочнева Гульсина Гаднановна
RU2323166C1
СПОСОБ ОЧИСТКИ ВОД ОТ НЕФТЕПРОДУКТОВ 2004
  • Авраменко Валентин Александрович
  • Братская Светлана Юрьевна
  • Железнов Вениамин Викторович
  • Сергиенко Валентин Иванович
  • Филиппова Ирина Анатольевна
  • Юдаков Александр Алексеевич
  • Юхкам Анна Александровна
RU2279405C2
СПОСОБ ОЧИСТКИ СТОЧНЫХ ВОД 2003
  • Тепаев В.А.
  • Гончар А.В.
  • Ющенко А.С.
  • Делян В.И.
  • Счастливцев С.Н.
  • Богачева В.В.
  • Дуняшев Б.З.
RU2237024C1
СПОСОБ ОБЕЗВРЕЖИВАНИЯ НЕФТЕЗАГРЯЗНЕННЫХ ГРУНТОВ, СПОСОБ ОБЕЗВРЕЖИВАНИЯ ОТРАБОТАННЫХ БУРОВЫХ ШЛАМОВ 2011
  • Куми Вячеслав Владимирович
RU2486166C2
СПОСОБ РЕГЕНЕРАЦИИ ЗАГРУЗКИ В ФИЛЬТРУЮЩЕМ МОДУЛЕ ДЛЯ ОЧИСТКИ ВОДЫ 2012
  • Кожушко Алексей Юрьевич
RU2498842C1

Иллюстрации к изобретению RU 2 206 522 C1

Реферат патента 2003 года СПОСОБ ОЧИСТКИ СТОЧНЫХ ВОД ОТ ВРЕДНЫХ ПРИМЕСЕЙ, СОДЕРЖАЩИХ КАДМИЙ

Изобретение относится к способам очистки многокомпонентных сточных вод от вредных примесей, в частности от кадмия, никеля, нефтепродуктов, анионных поверхностно-активных веществ в растворимой и дисперсной формах в присутствии этиленгликоля, поливинилового спирта и неорганических солей, и может быть использовано в машиностроительной и химической промышленности, в частности при производстве химических источников тока. Для осуществления способа перед очисткой сорбцией проводят очистку флокуляцией путем введения в сточные воды катионного полиэлектролита в количестве 0,5-2,2% от концентрации сухих веществ сточной воды, при этом флокуляцию проводят в два этапа, на первом их которых осуществляют очистку от вредных примесей в дисперсном состоянии, а на втором этапе - от вредных примесей в растворенном состоянии, а в качестве сорбента используют последовательно расположенные термомодифицированный доломит и активированный уголь. В качестве катионного полиэлектролита используют сополимер диметиламиноэтилметакрилата диметилсульфата и акриламида, содержащий не менее 80% мольных катионных групп, количество которого на первом этапе составляет 0,8-2,2%, а на втором этапе - 0,5-1,5% от концентрации сухих веществ сточной воды. Очистку сорбцией осуществляют путем пропускания через сорбенты обрабатываемой воды со скоростью 0,5-1 дм3/мин, причем объемное соотношение термомодифицированного доломита и активированного угля составляет 4: 1 соответственно. Способ обеспечивает повышение качества очистки многокомпонентных вод при обеспечении замкнутого цикла водоснабжения. 2 з.п.ф-лы, 1 ил., 1 табл.

Формула изобретения RU 2 206 522 C1

1. Способ очистки сточных вод от вредных примесей, содержащих кадмий, включающий сорбцию, отличающийся тем, что перед очисткой сорбцией проводят очистку флокуляцией путем введения в сточные воды катионного полиэлектролита в количестве 0,5-2,2% от концентрации сухих веществ сточной воды, при этом флокуляцию проводят в два этапа, на первом из которых осуществляют очистку от вредных примесей в дисперсном состоянии, а на втором этапе - от вредных примесей в растворенном состоянии, а в качестве сорбента используют последовательно расположенные термомодифицированнывй доломит и активированный уголь. 2. Способ по п.1, отличающийся тем, что в качестве катионного полиэлектролита используют сополимер диметиламиноэтилметакрилата диметилсульфата и акриламида, содержащий не менее 80% мольных катионных групп, количество которого на первом этапе составляет 0,8-2,2%, а на втором этапе - 0,5-1,5% от концентрации сухих веществ сточной воды, а очистку сорбцией осуществляют путем пропускания через сорбенты обрабатываемой воды со скоростью 0,5-1 дм3/мин, причем объемное соотношение термомодифицированного доломита и активированного угля составляет 4:1 соответственно. 3. Способ по п.1 или 2, отличающийся тем, что при введении катионного полиэлектролита воду перемешивают до равномерного распределения в ней сополимера.

Документы, цитированные в отчете о поиске Патент 2003 года RU2206522C1

СПОСОБ ОЧИСТКИ СТОЧНЫХ ВОД ОТ ИОНОВ ТЯЖЕЛЫХ МЕТАЛЛОВ 1994
  • Зильберман М.В.
  • Налимова Е.Г.
  • Тиньгаева Е.А.
RU2125972C1
ФИЛЬТР ДЛЯ ОЧИСТКИ ПИТЬЕВОЙ ВОДЫ МСХ-30, СПОСОБ ЕГО ПОДКЛЮЧЕНИЯ К ВОДОПРОВОДНОЙ СЕТИ И ФИЛЬТР ОБЕЗЗАРАЖИВАНИЯ 1997
  • Драгунский А.Н.
  • Тулушманов В.А.
  • Котельников В.Б.
  • Гельфанд В.Н.
  • Кузиахметов И.Ш.
  • Шаймухаметов Ф.А.
RU2134141C1
СПОСОБ ИЗВЛЕЧЕНИЯ ЦИНКА И КАДМИЯ ИЗ ВОДНЫХ РАСТВОРОВ ЭЛЕКТРОЛИТОВ 1996
  • Багровская Н.А.
  • Никифорова Т.Е.
  • Рожкова О.В.
  • Лилин С.А.
  • Клейн В.П.
  • Козлов В.А.
  • Румянцев Е.М.
  • Блиничев В.Н.
  • Абакшин В.А.
  • Костров В.В.
RU2121008C1
US 5369072 A, 29.11.1994
US 6139753 A, 31.10.2000
US 5702614 A, 30.12.1997
DE 3206851 A1, 15.09.1983
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1

RU 2 206 522 C1

Авторы

Никифоров А.Ю.

Фомина В.И.

Никифоров И.А.

Ильина Л.А.

Даты

2003-06-20Публикация

2002-02-20Подача