НЕСУЩИЙ ЭЛЕМЕНТ РОТОРА ТУРБОМАШИНЫ Российский патент 2003 года по МПК F01D5/02 

Описание патента на изобретение RU2209318C1

Изобретение относится к области энергомашиностроения, в частности к роторам турбомашин.

Известен ротор барабанного типа, содержащий несколько рядов лопаток, закрепленных на барабане, представляющем собой цилиндрическую или близкую к ней оболочку вращения. Барабан изготавливается из поковки и может быть выполнен с кольцевыми ребрами, подкрепляющими оболочку (см. Г.С. Скубачевский. Авиационные газотурбинные двигатели. М.: Машиностроение, 1969, с. 68, 72, рис. 3.18).

Несмотря на то, что известный ротор турбомашины обладает высокой поперечной жесткостью, его недостаток заключается в том, что при сосредоточении основной массы в наиболее нагруженной периферийной части, поддерживаемой только за счет окружных усилий, барабан нельзя использовать в быстроходных роторах. Поскольку размеры ребер ограничены поковкой или технологическими возможностями, окружная скорость на наружном диаметре барабана допускается из условий прочности материала - стали или легких сплавов - не более 180-250 м/с.

Известен составной ротор дискового типа турбомашины, содержащий соединенные с валом специально спрофилированные диски, на периферии которых закреплены рабочие лопатки. Крутящий момент от каждой ступени передается через вал (см. Г.С. Скубачевский. Авиационные газотурбинные двигатели. М.: Машиностроение, 1969, с. 72, рис. 3.19).

Недостатками данного ротора являются относительно небольшая поперечная жесткость вала и как следствие ухудшение динамических характеристик ротора при значительном весе большого количества дисков. Для повышения жесткости ротора необходимо увеличивать диаметр вала, но при этом увеличиваются центральные отверстия дисков, что приводит к снижению их прочности.

Известен дисково-барабанный ротор многоступенчатой турбомашины, содержащий лопатки, закрепленные на дисках, и присоединенную к последним тонкостенную оболочку - часть барабана, обеспечивающую требуемую жесткость ротора (см. Известия Академии инженерных наук Украины. НПП "Машпроект" 45 лет (Сборник статей) Специальное тематическое приложение отделения машиностроения и прогрессивных технологий. Выпуск 1/1999, стр.164, рис.1).

Недостатки известного ротора при окружных скоростях свыше 250 м/с связаны с функциональной перегрузкой дисков, каждый из которых несет не только лопатки, но и поддерживает участки барабана. При большом количестве дисков конструкция характеризуется значительным весом и повышенной стоимостью заготовок. Применение менее дорогостоящих материалов приводит к снижению прочности или росту осевых габаритов дисков. Уменьшение их числа также ведет к увеличению массы дисково-барабанного ротора, так как помимо соответствующего усиления оставшихся дисков возрастает величина пролетов между ними и для обеспечения прочности оболочки, подверженной изгибу центробежными силами, требуется ее существенное утолщение.

Среди аналогов не выявлено прототипа, так как в указанных выше технических решениях оболочки вращения роторов являются, в основном, соединительными элементами для передачи крутящего момента и придания ротору изгибной жесткости, несущая же способность оболочек от действия центробежных нагрузок обеспечена лишь частично, только за счет окружных усилий.

Задача изобретения - снижение веса, стоимости и повышение надежности ротора при работе с большими окружными скоростями - свыше 250 м/с.

Указанный технический результат достигается тем, что несущий элемент ротора турбомашины содержит оболочку вращения с криволинейной формой меридиана срединной поверхности и одним или несколькими кольцевыми поясами для крепления лопаточных венцов, а также осевой распорный элемент оболочки.

Такое выполнение несущего элемента ротора позволяет, отказавшись от стандартных дисков, снизить вес ротора и уменьшить количество дорогостоящих поковок, заменив их раскатными кольцами. Под действием центробежных нагрузок в соосной системе "оболочка - распорный элемент" при достаточной продольной жесткости последнего возникает осевая сила и как следствие в оболочке несущего элемента развиваются меридиональные усилия растяжения, которые совместно с окружными усилиями обеспечивают поддержку собственно оболочки и в конечном счете лопаточных венцов через элементы их крепления в кольцевых поясах - местных утолщениях оболочки.

Меридиан срединной поверхности оболочки несущего элемента может иметь изломы, каждый из которых расположен в пределах одного кольцевого пояса для крепления лопаточного венца или в пределах кольцевой зоны, объединяющей два соседних кольцевых пояса для крепления лопаточных венцов.

Скачкообразное изменение кривизны - излом меридиана оболочки с увеличением его наклона к оси вращения ротора в области кольцевого пояса - месте приложения сосредоточенной нагрузки от лопаточного венца - обеспечивает возрастание поддерживающего эффекта от меридиональных усилий в оболочке и повышение ее несущей способности.

Конструкция несущего элемента ротора может включать развитую в меридиональном сечении кольцевую зону, объединяющую два соседних кольцевых пояса для крепления лопаточных венцов и пересекающую оболочку. В этом случае в оболочке несущего элемента для восприятия нагрузки от двух лопаточных венцов достаточно иметь один излом меридиана срединной поверхности, расположенный в пределах указанной выше кольцевой зоны.

В каждой точке излома меридиана срединной поверхности оболочки несущего элемента ориентация ее участков может определяться выражением:
Q/P = ctgθнR

+ctgθкR
;
где θнR
и θкR
- углы между осью вращения и нормалью к срединной поверхности соответственно носового и кормового участков оболочки, пересекающихся на радиусе вращения R;
Q - максимальная при заданной осевой силе Р от распорного элемента величина суммарной радиальной нагрузки от рабочих лопаток, приложенная к поясу их крепления или двум поясам, в пределах которых находится эта точка излома.

Данное выражение определяет наибольшую из возможных нагрузок на несущий элемент ротора и является условием отсутствия перерезывающих усилий в оболочке в окрестности точки излома меридиана срединной поверхности.

Участки оболочки несущего элемента вне точек излома меридиана ее срединной поверхности могут иметь торообразную форму, а геометрические параметры этих участков при минимальной массе могут определяться выражениями:
sinθ = (R/r)exp[-ρω2(R2-r2)/2σ]sinθR;
h = P/2πrσsinθ,
где R - максимальный радиус вращения срединной поверхности участка оболочки;
r - произвольный радиус вращения на участке срединной поверхности оболочки;
h - толщина оболочки на радиусе r;
θ - угол между осью вращения ротора и нормалью к срединной поверхности оболочки на радиусе r;
ρ - плотность материала;
σ - напряжение, допустимое по условиям прочности;
ω - расчетная частота вращения.

Данные формулы обеспечивают выполнение условий равнонапряженности и отсутствия изгиба оболочки в окружном и меридиональном направлениях под действием центробежных сил.

Осевой распорный элемент оболочки может быть связан с оболочкой несущего элемента ротора посредством резьбового соединения, что обеспечивает технологичность конструкции при сборке, а также дает возможность удаления подложек сварных швов во внутренней полости после сварки оболочки.

Соединение осевого распорного элемента оболочки с оболочкой может быть и неразъемным, например сварным; при достаточной продольной жесткости, не превышающей собственную жесткость оболочки, не имеет существенного значения и конструктивное исполнение осевого распорного элемента оболочки: стержень постоянного или переменного сечения, цилиндрическая или коническая втулка и т. п. , важно лишь, чтобы ось распорного элемента, упирающегося концами в оболочку, располагалась вдоль оси вращения несущего элемента ротора.

На фиг. 1 изображен несущий элемент ротора турбомашины, меридиональное сечение;
на фиг.2 - узел А на фиг.1.

Несущий элемент ротора турбомашины содержит оболочку 1 вращения с кольцевыми поясами 2 крепления лопаточных венцов 3, осевой распорный элемент 4 оболочки 1. Для крепления осевого распорного элемента 4 оболочки 1 в распор имеются упоры 5 и 6, последний из которых выполнен с резьбой; в местах упоров оболочка 1 имеет усиления, снижающие концентрацию напряжений. Кольцевая зона 7, объединяющая два кольцевых пояса 2 крепления лопаточных венцов 3, пересекается в меридиональном сечении с оболочкой 1. Элементы 8 и 9 - для передачи крутящего момента в остальные части ротора.

Площадь поперечного сечения осевого распорного элемента 4 оболочки 1 определяется условиями прочности и устойчивости при действии сжимающего усилия Р в продольном направлении, а ось осевого распорного элемента 4 оболочки 1 совпадает с осью вращения несущего элемента. Последний может быть как в единственном числе, так и входить в каскад аналогичных несущих элементов, передавая крутящий момент в остальные части ротора посредством элементов 8 и 9 штифтовых соединений.

На фиг.2 схематично показаны внешние усилия, действующие на секцию оболочки несущего элемента: осевое Р от распорного элемента и суммарная центробежная нагрузка Q от лопаточных венцов и элементов их крепления. Выделенная секция включает носовой (н) и кормовой (к) участки оболочки 1 несущего элемента, сходящиеся на радиусе R соответственно под углами θнR

и θкR
к плоскости действия контурной нагрузки Q. Величина θ изменяется в зависимости от радиуса r и определяется углом между нормалью к срединной поверхности и направлением оси вращения X; ориентация вектора задается поворотом по часовой стрелке от указанного выше направления ветвей. Форма оболочки с переменной толщиной h вдоль ее образующей в результате равнопрочного профилирования обеспечивает минимальный вес несущего элемента ротора.

При работе турбомашины оболочка 1 несущего элемента под нагрузкой от лопаточных венцов 3 и собственных центробежных сил стремится растянуться в радиальном и сжаться в осевом направлении. Осевой распорный элемент 4 оболочки 1, обладая продольной жесткостью, существенно превышающей жесткость оболочки, ограничивает деформацию последней, что приводит к возникновению реактивной осевой силы Р в местах упоров 5 и 6 осевого распорного элемента 4 оболочки 1, уравновешивающей соответствующие меридиональные усилия растяжения в оболочке 1 несущего элемента.

Равнопрочное профилирование участков оболочки 1 позволяет обеспечить оптимальную форму меридионального сечения несущего элемента и ориентацию меридиональных усилий в оболочке 1 с поддерживающим эффектом, дополняющим действие окружных усилий и даже соизмеримым с последними.

Похожие патенты RU2209318C1

название год авторы номер документа
СТАТОР ТУРБОМАШИНЫ 2001
  • Беляев В.Е.
  • Косой А.С.
RU2205276C1
РОТОР ТУРБОМАШИНЫ 2002
  • Елисеев Ю.С.
  • Беляев В.Е.
  • Косой А.С.
RU2209985C1
СПОСОБ ВОССТАНОВЛЕНИЯ ЛОПАТОК ТУРБОМАШИН 2001
  • Мошкин Ю.Б.
  • Елисеев Ю.С.
  • Поклад В.А.
  • Гейкин В.А.
  • Редчиц В.В.
RU2185945C1
СПОСОБ ВИБРОАКУСТИЧЕСКОЙ ДИАГНОСТИКИ МЕЖВАЛЬНЫХ ПОДШИПНИКОВ КАЧЕНИЯ ДВУХВАЛЬНЫХ ТУРБОМАШИН И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2001
  • Яковлев В.Е.
  • Максимов В.П.
RU2200942C2
ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА ДЛЯ ИССЛЕДОВАНИЯ ГАЗОДИНАМИЧЕСКОГО ВЗАИМОДЕЙСТВИЯ РОТОРНЫХ И СТАТОРНЫХ ЛОПАТОЧНЫХ ВЕНЦОВ В ОСЕВЫХ ТУРБОМАШИНАХ 2003
  • Сарен В.Э.
  • Савин Н.М.
  • Зверев В.Ф.
  • Сусленников Л.А.
RU2255319C1
ФОРСАЖНАЯ КАМЕРА ГАЗОТУРБИННОГО ДВИГАТЕЛЯ 2007
  • Образцов Владислав Николаевич
RU2335651C1
ФРОНТОВОЕ УСТРОЙСТВО КОЛЬЦЕВОЙ КАМЕРЫ СГОРАНИЯ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ 2007
  • Лагутин Валерий Григорьевич
  • Лягушкин Владимир Николаевич
  • Зубаревич Андрей Николаевич
RU2337273C1
МНОГОСТУПЕНЧАТЫЙ КОМПРЕССОР 2002
  • Жук М.В.
  • Матренин А.В.
  • Антипин В.В.
RU2212567C1
ПРИСПОСОБЛЕНИЕ ДЛЯ ФИКСАЦИИ РЕМОНТИРУЕМЫХ ЛОПАТОК ТУРБОМАШИН 2001
  • Кузьмин А.С.
RU2189894C1
ОХЛАЖДАЕМАЯ ЛОПАТКА ТУРБОМАШИНЫ 2004
  • Бервинов Борис Петрович
  • Кинзбурский Владимир Самойлович
RU2283432C2

Иллюстрации к изобретению RU 2 209 318 C1

Реферат патента 2003 года НЕСУЩИЙ ЭЛЕМЕНТ РОТОРА ТУРБОМАШИНЫ

Изобретение относится к области энергомашиностроения, в частности к роторам турбомашин. Несущий элемент ротора турбомашины содержит оболочку вращения с криволинейной формой меридиана срединной поверхности и одним или несколькими кольцевыми поясами для крепления лопаточных венцов, а также осевым распорным элементом. В зависимых пунктах даны математические формулы для обеспечения условий равнонапряженности оболочки в окружном и меридиональном направлениях под действием центробежных сил. Изобретение позволяет снизить вес, стоимость и повысить надежность ротора при работе с большими окружными скоростями - свыше 250 м/с. 4 з.п. ф-лы, 2 ил.

Формула изобретения RU 2 209 318 C1

1. Несущий элемент ротора турбомашины, содержащий оболочку вращения с криволинейной формой меридиана срединной поверхности и одним или несколькими кольцевыми поясами для крепления лопаточных венцов, а также осевым распорным элементом. 2. Несущий элемент по п. 1, отличающийся тем, что меридиан срединной поверхности оболочки имеет изломы, каждый из которых расположен в пределах одного кольцевого пояса для крепления лопаточного венца или в пределах кольцевой зоны, объединяющей два соседних кольцевых пояса для крепления лопаточных венцов. 3. Несущий элемент по п.2, отличающийся тем, что в каждой точке излома меридиана срединной поверхности оболочки ориентация ее участков определяется выражением
Q/P = ctgθHR

+ctgθKR
,
где θHR
и θKR
- углы между осью вращения и нормалью к срединной поверхности соответственно носового и кормового участков оболочки, пересекающихся на радиусе вращения R;
Q - максимальная при заданной осевой силе Р от распорного элемента величина суммарной радиальной нагрузки от рабочих лопаток, приложенная к поясу их крепления или двум поясам, в пределах которых находится эта точка излома. 4. Несущий элемент по п.3, отличающийся тем, что участки оболочки вне точек излома меридиана ее срединной поверхности имеют торообразную форму, а геометрические параметры этих участков при минимальной массе определяются выражениями:
sinθ = (R/r)exp[-ρω2(R2-r2)/2σ]sinθR;
h = P/2πrσsinθ,
где R - максимальный радиус вращения срединной поверхности участка оболочки;
r - произвольный радиус вращения на участке срединной поверхности оболочки;
ω - расчетная частота вращения;
ρ - плотность материала;
θ - угол между осью вращения ротора и нормалью к срединной поверхности оболочки на радиусе r;
σ - напряжение, допустимое по условиям прочности;
h - толщина оболочки на участке радиуса r.
5. Несущий элемент по любому из пп.1-4, отличающийся тем, что осевой распорный элемент связан с оболочкой посредством резьбового соединения.

Документы, цитированные в отчете о поиске Патент 2003 года RU2209318C1

Газотурбинный двигатель летательного аппарата 1990
  • Хлопенков Павел Родионович
SU1763695A1
GB 1331209 A, 26.09.1973
Турбина внутреннего сгорания 1946
  • Нечаев М.А.
SU69507A1
Способ дробления стружки в процессе резания и устройство для его осуществления 1985
  • Гринберг Петр Борисович
SU1284710A1
Турбина внутреннего горения с вращающейся камерой горения 1933
  • Косоруков Н.А.
SU35495A1
Осевая турбомашина 1977
  • Бойцов Владимир Иванович
  • Иванов Борис Викторович
SU779589A1
Турбина 1983
  • Лазарев Леонид Яковлевич
  • Игнатьевский Евгений Анатольевич
  • Константинов Юрий Иванович
  • Фадеев Валерий Александрович
SU1132030A1
US 3932061 A, 13.01.1976
СПОСОБ РАЗРАБОТКИ ЗАЛЕЖИ НЕФТИ МАССИВНОГО ТИПА С ПОСЛОЙНОЙ НЕОДНОРОДНОСТЬЮ 2010
  • Хисамов Раис Салихович
  • Рамазанов Рашит Газнавиевич
  • Бакиров Ильшат Мухаметович
  • Идиятуллина Зарина Салаватовна
  • Оснос Владимир Борисович
RU2439298C1

RU 2 209 318 C1

Авторы

Елисеев Ю.С.

Беляев В.Е.

Косой А.С.

Петров Евгений Владимирович

Даты

2003-07-27Публикация

2001-11-02Подача