ТРЕХСЛОЙНАЯ КОРПУСНАЯ КОНСТРУКЦИЯ Российский патент 2003 года по МПК B32B3/12 B32B5/14 B32B5/18 B32B7/02 B32B7/04 B32B15/04 B32B15/08 B32B17/06 

Описание патента на изобретение RU2211147C1

Изобретение относится к конструкции корпусов судов, платформ и прочих плавучих средств из металлических и неметаллических материалов и может быть использовано в судостроении, в других областях транспортного машиностроения и в промышленном строительстве.

Изобретение направлено на повышение прочности, коррозионной стойкости и снижение массы корпусных конструкций, повышение тепло- и шумозащитных и вибродемпфирующих характеристик. Известны конструкция двойного борта судна с диафрагмами для повышения живучести танкеров (патент 2108262 РФ) и конструкция обечайки, состоящей из двух корпусов с размещенным между ними гибким элементом (патент 2133449 РФ). Недостатком этих конструкций является большая масса и низкая коррозионная стойкость. Известна принятая в качестве прототипа трехслойная конструкция, состоящая из двух внешних(несущих) слоев и расположенного между ними гофрового заполнителя (элемента), изготовленных из металла (Прохоров Б.Ф. Кобелев В.Н. "Трехслойные конструкции в судостроении. " Судостроение. 1972, стр.10-11, 26-27). Несущие слои и гофровый заполнитель трехслойной конструкции могут изготавливаться из стали, алюминиевых сплавов и других конструкционных металлов.

Недостатком трехслойных металлических конструкций является недостаточно высокая весовая отдача, низкая коррозионная стойкость, низкие демпфирующие, звуко- и теплозащитные характеристики. Например, скорость коррозии стали РСД32 (Ст. 3) в морской воде, которая широко используется при изготовлении судовых корпусных конструкций, составляет 0,1-0,3 мм/год и с учетом этого толщина обшивочных листов Δ корпусных конструкций в соответствии с требованиями Регистра РФ (по уравнению Δ=И(Т-12), где И - скорость коррозии, Т - продолжительность эксплуатации судна (30 лет), увеличивается на 1,8-5,4 мм, что приводит к увеличению массы тонкостенных конструкций на 10-30% ("Правила классификации и постройки морских судов". Часть 2. Корпус, стр.52). Эти недостатки могут быть устранены применением для несущего слоя трехслойной конструкции материалов с меньшей плотностью и более высокими шумо- и теплозащитными свойствами и коррозионной стойкостью, например, стеклопластика. При использовании стеклопластика обычно используется клеевое соединение, однако в трехслойной конструкции с металлическим гофровым элементом вследствие малой площади контакта несущего слоя с вершинами гофрового элемента клеевое соединение не может обеспечить требуемую прочность и эксплуатационную надежность трехслойной конструкции. Техническим результатом настоящего изобретения является повышение весовой отдачи, коррозионной стойкости, тепло- и звукопоглощающих свойств трехслойной корпусной конструкции. Поставленный технический результат достигается тем, что в трехслойной корпусной конструкции, состоящей из двух несущих слоев, один из которых выполнен из металла, и гофрового элемента, выполненного из металла, второй несущий слой выполнен из стеклопластика и между металлическим гофровым элементом и слоем из стеклопластика расположен дополнительный гофровый элемент из стеклопластика, слой стеклопластика дополнительного гофрового элемента периодически через впадину основного металлического гофрового элемента жестко связан с основным металлическим гофровым элементом и с несущим слоем из стеклопластика, а полости гофрового элемента заполнены пористым материалом с плотностью 0,05-0,15 г/см3, причем соединение несущего слоя из металла и гофрового элемента из металла осуществлено сваркой, а несущего слоя из стеклопластика с дополнительным гофровым элементом из стеклопластика и дополнительного гофрового элемента из стеклопластика с основным гофровым элементом из металла - клеевым соединением.

В качестве клеевого соединения могут использоваться полиэфирные, эпоксидные и другие клеи.

Введение дополнительного гофрового элемента из стеклопластика увеличивает площадь клеевого соединения и обеспечивает передачу сдвиговых усилий с металлического элемента на несущие слои, прочность и надежность клеевого соединения повышает жесткость конструкции.

Изготовление из стеклопластика, обладающего высокой коррозионной стойкостью, несущего слоя трехслойной корпусной конструкции, контактирующего с морской средой, обеспечивает высокую коррозионную стойкость конструкции, исключает дополнительные затраты на лакокрасочные защитные покрытия.

Использование в составе конструкции стеклопластика, имеющего меньшую плотность по сравнению с металлом, позволяет снизить массу конструкции при сохранении прочности и эксплуатационной надежности, повышает ее звуко- и теплозащитные характеристики.

В качестве стеклопластика могут использоваться слоистые пластики, состоящие из связующего - композиции на основе ненасыщенных полиэфирных, эпоксидных и других типов смол и наполнителя - стекловолокнистого наполнителя. Стекловолокнистым наполнителем могут быть элементарные стекловолокна, нити, жгуты, ткани различных структур, холсты.

Применение пористого заполнителя повышает устойчивость наклонных стенок гофрового элемента и несущих слоев и жесткость трехслойной конструкции в целом, что позволяет снизить массу конструкции за счет уменьшения толщины несущих слоев и стенок гофрового элемента.

Применение пористого заполнителя повышает теплоизоляцию, шумозащитные и демпфирующие свойства трехслойной конструкции, повышает ее плавучесть, препятствует распространению морской воды внутри конструкции при повреждении наружного слоя. Введение пористого заполнителя с плотностью менее 0,05 г/см3 не обеспечивает прочность конструкции при действии сжимающих усилий, а при плотности заполнителя более 0,1 г/см3 снижается эффективность его применения в связи с увеличением массы конструкции и снижением демпфирующих свойств, шумо- и теплозащиты.

В качестве пористого заполнителя могут использоваться пенопласта (пенополиуретаны, фенолформальдегидные и т.д.).

На чертеже представлена предлагаемая трехслойная корпусная конструкция, которая состоит из основного металлического гофрового элемента (2), дополнительного гофрового элемента из стеклопластика (3) двух несущих слоев, один из которых изготовлен из стеклопластика(4), а другой из металла (1), и пористого заполнителя (5). Соединение дополнительного гофрового элемента из стеклопластика (2) с основным металлическим (1) и с несущим слоем из стеклопластика (3) - клеевое, а металлического несущего слоя (4) с основным металлическим гофровым элементом (1) - сварное (контактная сварка).

Конструкция работает следующим образом. Трехслойная конструкция в составе корпуса судна располагается таким образом, чтобы несущий слой из стеклопластика был наружным, контактирующим с морской коррозионной средой, а металлический несущий слой был внутренним, это исключает затраты на применение защитных коррозионностойких лакокрасочных покрытий, с одной стороны, а с другой, сохраняет возможность крепления деталей насыщения с внутренней стороны корпуса с использованием сварки или механического соединения. Применение дополнительного гофра из стеклопластика и пористого заполнителя повышает прочность и жесткость конструкции при действии сжимающих и изгибающих нагрузок, а также обеспечивает теплоизоляцию, повышает демпфирующие и шумозащитные характеристики.

Для оценки эффективности предлагаемой трехслойной конструкции была произведена оптимизация корпуса судна и на основе критерия минимума массы конструкции и исходя из одинакового местного давления выбраны предлагаемая трехслойная корпусная конструкция и конструкция-прототип, которые подкреплены продольными балками с шагом L (табл.1). Были изготовлены опытные образцы предлагаемой трехслойной конструкции и прототипа. В предлагаемой трехслойной конструкции металлический несущий слой и металлический гофровый элемент выполнены из стали PCD32 (Ст. 3), а второй несущий слой и дополнительный гофровый элемент - из стеклопластика, состоящего из полиэфирного связующего марки ПН 609-21М и слоев стеклоткани Т-10-80, полости конструкции заполнены пенополиуретаном. Общая высота гофрового элемента в трехслойной корпусной конструкции - 65 мм, толщина несущего слоя из стеклопластика - 1,5 мм, из стали - 0,5 мм, толщина стенки гофрового элемента из стали - 0,8 мм, дополнительного гофра из стеклопластика - 3,1 мм, плотность пористого заполнителя (пенополиуретана) - 0,1 г/см3. Соединение несущего стального слоя и стального гофра - контактная роликовая сварка, а несущего слоя из стеклопластика с дополнительным слоем из стеклопластика и с пористым заполнителем - эпоксидно-полисульфидным клеем марки К-153.

В конструкции прототипа несущие слои и гофровый элемент изготовлены из стали PCD32 (Ст.3), высота гофрового элемента 30 мм, толщина стенки гофрового элемента 1,35 мм, толщина одного несущего слоя - 2,0 мм, второго - 2,0 и 5,0 мм.

Результаты исследования демпфирующих (коэффициент механических потерь изгибных колебаний) и теплофизических характеристик (теплопроводность), а также снижение уровня шума и объемная масса предлагаемой трехслойной конструкции в сопоставлении с прототипом приведены в табл.2.

Определение коэффициента потерь механических колебаний (показатель демпфирования) проводилось способом измерения частотной характеристики. Характеристики шумопоглощения конструкций определялись расчетным путем с использованием известных зависимостей по результатам полученных характеристик демпфирования (коэффициента механических потерь). Как видно из приведенных в табл.2 данных, в предлагаемой трехслойной констукции по сравнению с прототипом на 40-57% снижается масса, возрастают в 60 раз демпфирующие характеристики, что приводит к снижению уровня шума на 12-14 дБ, теплопроводность понизилась в 2,2 раза.

Технико-экономический эффект от использования изобретения по сравнению с прототипом заключается в снижении массы, повышении коррозионной стойкости, снижении уровня шума, повышении демпфирующих и теплозащитных характеристик, улучшении тактико-технических данных судов, построенных с использованием предлагаемой конструкции. Изготовление одного из несущих слоев из стеклопластика уменьшает объем сварочных работ при изготовлении трехслойной конструкции и в результате снижается уровень остаточных сварочных деформаций.

Похожие патенты RU2211147C1

название год авторы номер документа
ТРЕХСЛОЙНАЯ КОРПУСНАЯ КОНСТРУКЦИЯ 1998
  • Кучкин В.В.
  • Чижиков В.В.
  • Осокин Е.П.
  • Ривкинд В.Н.
  • Рагулина Т.Л.
RU2142382C1
ТРЕХСЛОЙНАЯ КОРПУСНАЯ КОНСТРУКЦИЯ 2006
  • Кучкин Василий Васильевич
  • Осокин Евгений Петрович
  • Колпаков Игорь Николаевич
  • Горев Юрий Александрович
  • Ривкинд Виктор Нохимович
  • Фролов Сергей Евгеньевич
  • Аникина Тамара Александровна
RU2321516C1
КОНСТРУКЦИОННЫЙ МНОГОФУНКЦИОНАЛЬНЫЙ СЛОИСТЫЙ МЕТАЛЛОПОЛИМЕРНЫЙ МАТЕРИАЛ 2001
  • Кучкин В.В.
  • Осокин Е.П.
  • Ривкинд В.Н.
  • Рагулина Т.Л.
  • Рыбин В.В.
RU2212340C2
СЛОИСТАЯ КОРПУСНАЯ КОНСТРУКЦИЯ 1992
  • Кучкин В.В.
  • Иванов В.В.
  • Ривкинд В.Н.
  • Рагулина Т.Л.
RU2077447C1
ЗВУКОПОГЛОЩАЮЩИЙ МАТЕРИАЛ И СПОСОБ ИЗГОТОВЛЕНИЯ ИЗДЕЛИЙ ИЗ НЕГО 2002
  • Гримайловская Т.П.
  • Сурнин Е.Г.
  • Кондрашов Э.К.
  • Каблов Е.Н.
RU2213072C1
КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ 2000
  • Петров Ю.Н.
  • Хомякова Н.Ф.
  • Мурунов А.И.
  • Таволжанов А.Н.
  • Левин В.Г.
RU2184793C2
СПОСОБ ИЗГОТОВЛЕНИЯ КАТАЛИЗАТОРА НА ЛЕНТОЧНОМ МЕТАЛЛИЧЕСКОМ НОСИТЕЛЕ 2001
  • Улин И.В.
  • Рыбин В.В.
  • Самоделкин Е.А.
  • Фармаковский Б.В.
RU2205787C2
АНТЕННЫЙ ОБТЕКАТЕЛЬ 2001
  • Платонов В.В.
  • Русин М.Ю.
RU2189674C1
ДВУХСЛОЙНАЯ КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ 2001
  • Карзов Г.П.
  • Марков В.Г.
  • Яковлев В.А.
  • Драгунов Ю.Г.
  • Степанов В.С.
  • Третьяков Н.В.
RU2206632C2
ОСОБО ЧИСТЫЙ НИЗКОУГЛЕРОДИСТЫЙ ФЕРРОТИТАН 2003
  • Рыбин В.В.
  • Орыщенко А.С.
  • Слепнев В.Н.
  • Одинцов Н.Б.
  • Тихомиров А.В.
  • Удовиков С.П.
  • Баранцев А.С.
  • Попов О.Г.
  • Исаков М.П.
RU2247791C1

Иллюстрации к изобретению RU 2 211 147 C1

Реферат патента 2003 года ТРЕХСЛОЙНАЯ КОРПУСНАЯ КОНСТРУКЦИЯ

Изобретение относится к конструкции корпусов судов, платформ и прочих плавучих средств из металлических и неметаллических материалов и может быть использована в судостроении, в других областях транспортного машиностроения и в промышленном строительстве. Конструкция состоит из двух несущих слоев и гофрового элемента, один из несущих слоев выполнен из стеклопластика, другой - из металла, а между несущим слоем из стеклопластика и металлическим гофровым элементом расположен дополнительный гофровый элемент из стеклопластика и полости гофрового элемента заполнены пористым материалом с плотностью 0,05-0,15 г/см3. Соединение несущего слоя из металла и гофрового элемента из металла осуществлено сваркой, а несущего слоя из стеклопластика с дополнительным гофровым элементом из стеклопластика и дополнительного гофрового элемента из стеклопластика с основным гофровым элементом из металла - клеевым соединением. При использовании предлагаемой трехслойной корпусной конструкции, изготовленной из металла, снижается масса конструкции на 40-57%, повышаются в 60 раз демпфирующие характеристики, снижается уровень шума на 12-14 дБ и теплопроводность в 2,2 раза, обеспечивается высокая коррозионная стойкость. 1 ил., 2 табл.

Формула изобретения RU 2 211 147 C1

Трехслойная корпусная конструкция, состоящая из двух несущих слоев, один из которых выполнен из металла и гофрового элемента, выполненного из металла, отличающаяся тем, что второй несущий слой выполнен из стеклопластика, между металлическим гофровым элементом и слоем из стеклопластика расположен дополнительный гофровый элемент из стеклопластика, слой стеклопластика дополнительного гофрового элемента периодически через впадину основного металлического гофрового элемента жестко связан с основным металлическим гофровым элементом и с несущим слоем из стеклопластика, а полости гофрового элемента заполнены пористым материалом с плотностью 0,05-0,15 г/см3, причем соединение несущего слоя из металла и гофрового элемента из металла осуществлено сваркой, а несущего слоя из стеклопластика с дополнительным гофровым элементом из стеклопластика и дополнительного гофрового элемента из стеклопластика с основным гофровым элементом из металла - клеевым соединением.

Документы, цитированные в отчете о поиске Патент 2003 года RU2211147C1

ПРОХОРОВ Б.Ф., КОБЕЛЕВ В.Н
ТРЕХСЛОЙНЫЕ КОНСТРУКЦИИ В СУДОСТРОЕНИИ
СУДОСТРОЕНИЕ, 1972, С.10-11, 26 и 27
Многослойная панель 1982
  • Савельев Владимир Георгиевич
  • Бондаренко Виктор Карпович
  • Малярук Николай Петрович
SU1028808A2
SU 975959 A, 23.11.1982
МНОГОСЛОЙНАЯ ПАНЕЛЬ 1995
  • Зверинский Ю.М.
  • Тетерев Л.А.
RU2097503C1

RU 2 211 147 C1

Авторы

Кучкин В.В.

Осокин Е.П.

Крыжевич Г.Б.

Рыбин В.В.

Попов О.Г.

Даты

2003-08-27Публикация

2002-04-30Подача