СПОСОБ УТИЛИЗАЦИИ СТРУЖКИ ИЗ ОБЕДНЕННОГО УРАНА Российский патент 2003 года по МПК G21F9/28 

Описание патента на изобретение RU2212071C2

Изобретение относится к области утилизации отходов из обедненного урана, в частности, находящегося в виде стружки.

В настоящее время на складах различных предприятий атомной промышленности скопилось значительное количество стружки из обедненного урана.

Высокая химическая активность урана, большая удельная поверхность стружки, возможность ее искрения и самовоспламенения при механических воздействиях, длительное хранение и транспортировка стружки металлического урана представляют высокую потенциальную опасность с точки зрения аварийных ситуаций (пожары, взрывы, радиоактивное загрязнение окружающей среды и т.п. ).

Радикальным средством решения вопросов безопасности при длительном хранении урановой стружки является перевод ее в пожаровзрывобезопасный продукт: закись-окись урана, являющийся наиболее устойчивым из окислов урана.

До настоящего времени получение этого продукта осуществлялось прямым сжиганием металлического урана на воздухе или в кислороде.

Наиболее близким к заявляемому способу утилизации стружки из обедненного урана является способ, заключающийся в брикетировании (прессовании) стружки и дальнейшем сжигании ее в рабочей емкости установки, в которую подают воздух, нагретый до температуры 400oС. (Исходные требования на проектирование установки сжигания стружки. Комбинат "Электрохимприбор", 2000 г.).

Взаимодействие урана с кислородом воздуха протекает по реакциям:
U+O2=UO2, (1)
3U+4O2=U3O8; (2)
3UO2+O2=U3O8. (3)
Экзотермический характер химической реакции (2), т.е. с выделением большого количества тепла, приводит к повышению температуры урановой стружки до 450-550oС. Дальнейшее регулирование температуры стружки производится путем изменения расхода газового реагента (воздуха), изменения концентрации кислорода в газовом реагенте за счет его разбавления азотом, а также путем изменения температуры и расхода охлаждающего воздуха, подаваемого в рубашку рабочего объема.

Максимальная температура стружки не превышает 600oС. Образующийся при этом порошок окислов урана частично остается внутри рабочего объема установки, а частично в виде пыли переходит в газовую фазу, что создает трудности в обеспечении экологических требований безопасности при утилизации урановой стружки.

Задачей, на которую направлено изобретение, является обеспечение безопасного проведения способа утилизации урановой стружки за счет контролируемости температурного режима проведения способа и повышение экологической безопасности способа за счет исключения образования пылегазовой смеси урана.

Для этого предложен способ утилизации стружки из обедненного урана, заключающийся в окислении урана до закиси-окиси урана, отличающийся тем, что окисление ведут в две стадии: окисление урана до диоксида урана водой при температуре 100±5oС с последующим окислением диоксида урана до закиси-окиси урана на воздухе при температуре 700±10oС в течение 3-5 часов.

При этом окисление урана до диоксида урана ведут путем кипячения в воде в течение 25-30 часов.

Также окисление урана до диоксида урана ведут в водяном паре в течение 4-6 часов.

Такой способ осуществляется на первой стадии по реакции:

которая является эндотермической (В.С. Емельянов, А.И. Евстюхин - Металлургия ядерного горючего, Атомиздат, 1964).

Затем полученный диоксид урана (UO2) окисляется на воздухе при температуре 700±10oС до закиси-окиси урана (U3O8) по реакции (3). Обе эти химические реакции являются эндотермическими, т.е. процесс окисления урана проходит с поглощением тепла, а следовательно, обеспечивается полная контролируемость температурных режимов осуществляемых процессов окисления и не образуется пылегазовая смесь урана, создающая экологическую опасность работ при прямом сжигании урана.

На фиг. 1 показан процесс окисления урановой стружки в кипящей воде (100±5oС). В качестве ординаты на этом графике приведена степень окисления урана. Эта величина получена расчетным путем из экспериментальных значений привеса стружки по формуле

где К - степень окисления урана в процентах,
Ро - вес исходной стружки,
Р - вес стружки после соответствующего цикла испытаний,
Puo2 - расчетный вес стружки, окисленной до диоксида урана (UO2) по реакции (4).

На фиг. 2 показан процесс окисления урановой стружки в водяном паре (100±5oС).

На фиг. 3 показан процесс окисления порошка диоксида урана (UО2) на воздухе при температуре 700±10oС. В качестве ординаты на этом графике приведена степень окисления диоксида урана (К), рассчитанная по формуле

где Puo2 - вес стружки после первой стадии испытаний,
Р - вес стружки после соответствующего цикла испытаний,
Pu3o8 - расчетный вес исходной стружки при окислении до U3O8.

Способ осуществлялся следующим образом.

На экспериментальной лабораторной установке, включающей в себя цилиндрический сосуд объемом 12 л (автоклав), изготовленный из нержавеющей стали, и электроплитку, проведена проверка предполагаемых процессов окисления урановой стружки до порошка диоксида урана.

На крышке автоклава имеются манометр, гермоввод для термопар, два клапана давления (рабочий и аварийный) и вентиль для регулировки давления пара в автоклаве. Скорость выхода пара измеряется расходомером (в л/мин), подсоединенном к выходу регулирующего вентиля. Обычно скорость выхода пара, измеряемая расходомером, находилась в пределах ~15 л/мин, что близко к расчетному значению, полученному по весу выкипевшей воды.

Температура стружки и пара в автоклаве в процессе испытаний измерялась хромель-алюмелевыми термопарами с записью на потенциометре КСП-4.

При изучении кинетики окисления стружки в кипящей воде в автоклав помещался сосуд с предварительно взвешенной стружкой и заливался водой (~4 л). Нагрев воды и поддержание режима ее кипения осуществляли электроплиткой. Взвешивание стружки проводилось каждые 4-5 часов, при этом стружка высушивалась в сушильном шкафу до постоянного веса. Контроль степени окисления осуществлялся по привесу стружки (фиг.1). Цифрами обозначены номера экспериментов.

Видно, что окисление стружки урана в кипящей воде до диоксида урана осуществляется за 25-30 часов. Наблюдаемое различие в экспериментах 1-4 определяется некоторой неоднородностью стружки по толщине.

Для изучения кинетики окисления стружки в водяном паре в автоклав заливали воду (~4 л) и помещали сосуд с предварительно взвешенной стружкой выше уровня воды. В остальном эти эксперименты проводились аналогично экспериментам в кипящей воде. Результаты этих экспериментов, представленные на фиг. 2, показывают, что для окисления стружки урана в водяном паре (100±5oС) до диоксида урана достаточно 4-6 часов.

Для идентификации образовавшихся в процессе этих экспериментов продуктов в виде порошков проводился рентгенофазовый анализ на дифрактометре общего назначения ДРОН-3м, который подтвердил окисление урановой стружки до кубической фазы UO2.

Дальнейшее окисление диоксида урана до закиси-окиси урана проводилось в шахтной силитовой печи при температуре 700±10oС на воздухе. Измерения проводили каждый час. Результаты этого эксперимента, представленные на фиг.3, показывают, что полное окисление порошка диоксида урана до закиси-окиси урана достигается за 3-5 часов.

Таким образом, изобретение позволит осуществить утилизацию стружки из обедненного урана безопасным и экологически чистым способом.

Похожие патенты RU2212071C2

название год авторы номер документа
СПОСОБ КОНТРОЛЯ ОКСИДОВ УРАНА UO И UO НА ПРИМЕСИ 2015
  • Трофимов Трофим Иванович
  • Перевалов Сергей Анатольевич
  • Винокуров Сергей Евгеньевич
  • Самсонов Максим Дмитриевич
  • Маликов Дмитрий Андреевич
  • Травников Сергей Сергеевич
  • Куляко Юрий Михайлович
  • Савельев Борис Витальевич
RU2605456C1
СПОСОБ ПЕРЕРАБОТКИ УРАН-МОЛИБДЕНОВОЙ КОМПОЗИЦИИ 2009
  • Бухарин Александр Дмитриевич
  • Денискин Валентин Петрович
  • Колесников Борис Петрович
  • Коновалов Евгений Александрович
  • Соловей Александр Игоревич
  • Филатов Олег Николаевич
  • Черкасов Александр Сергеевич
RU2395857C1
ТАБЛЕТКА ЯДЕРНОГО ТОПЛИВА И СПОСОБ ЕЁ ПОЛУЧЕНИЯ 2016
  • Лысиков Александр Владимирович
  • Бахтеев Олег Александрович
  • Дегтярев Никита Александрович
  • Михеев Евгений Николаевич
  • Новиков Владимир Владимирович
RU2713619C1
СПОСОБ ПЕРЕРАБОТКИ ОБЛУЧЕННОГО ЯДЕРНОГО ТОПЛИВА 2004
  • Давыдов В.В.
  • Дегальцев Ю.Г.
  • Кухаркин Н.Е.
  • Пономарев-Степной Н.Н.
  • Самарин Е.Н.
  • Сидоренко Н.М.
  • Степеннов Б.С.
  • Уткин Ю.М.
  • Чернышов В.О.
RU2253916C1
СПОСОБ ПОЛУЧЕНИЯ ЗАКИСИ-ОКИСИ УРАНА 1999
  • Веревкин Е.Ф.
  • Гущин А.А.
  • Деменко А.А.
  • Кондаков В.М.
  • Короткевич В.М.
  • Малый Е.Н.
  • Мариненко Е.П.
  • Рудников А.И.
  • Сафошкин Г.В.
  • Хохлов В.А.
  • Буйновский А.С.
RU2150431C1
СПОСОБ ИЗГОТОВЛЕНИЯ ТАБЛЕТИРОВАННОГО ТОПЛИВА ДЛЯ ТЕПЛОВЫДЕЛЯЮЩИХ ЭЛЕМЕНТОВ ЯДЕРНОГО РЕАКТОРА 2007
  • Аброськин Игорь Евгеньевич
  • Чапаев Игорь Геннадьевич
  • Филиппов Евгений Александрович
  • Вергазов Константин Юрьевич
  • Лузин Александр Михайлович
RU2360311C2
СПОСОБ ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ ИЗОТОПОВ УРАНА В ЯДЕРНОМ ТОПЛИВЕ 2000
  • Маловик В.В.
  • Калантырь В.И.
  • Петров И.В.
  • Кузнецов А.И.
  • Федорова В.П.
  • Головешкин А.В.
RU2172987C1
СПОСОБ ИЗГОТОВЛЕНИЯ ТАБЛЕТКИ ЯДЕРНОГО КЕРАМИЧЕСКОГО ТОПЛИВА 2004
  • Добринский Владимир Степанович
  • Карманов Борис Андронович
  • Коробейников Игорь Владимирович
  • Кучковский Анатолий Андреевич
  • Маныч Антон Владимирович
  • Русин Юрий Григорьевич
  • Руфин Андрей Юрьевич
  • Шмелькин Лев Моисеевич
  • Яшин Сергей Алексеевич
RU2271584C2
Способ изготовления керамического ядерного топлива с выгорающим поглотителем 2019
  • Войтенко Максим Юрьевич
  • Карпеева Анастасия Евгеньевна
  • Пахомов Дмитрий Сергеевич
  • Скомороха Андрей Евгеньевич
  • Тимошин Игнат Сергеевич
RU2711006C1
СПОСОБ ИЗГОТОВЛЕНИЯ ТАБЛЕТОК ЯДЕРНОГО ОКСИДНОГО ТОПЛИВА 2010
  • Баранов Виталий Георгиевич
  • Хлунов Александр Витальевич
  • Курина Ирина Семеновна
  • Иванов Александр Викторович
  • Петров Игорь Валентинович
  • Тенишев Андрей Вадимович
  • Тимошин Игнат Сергеевич
RU2428757C1

Иллюстрации к изобретению RU 2 212 071 C2

Реферат патента 2003 года СПОСОБ УТИЛИЗАЦИИ СТРУЖКИ ИЗ ОБЕДНЕННОГО УРАНА

Изобретение относится к области переработки отходов из обедненного урана. Сущность изобретения: способ утилизации стружки из обедненного урана заключается в окислении урана до закиси-окиси урана. Окисление ведут в две стадии: окисление урана до диоксида урана водой при 100±5oС с последующим окислением диоксида урана до закиси-окиси урана на воздухе при 700±10oС в течение 3-5 ч. Преимущества изобретения заключаются в обеспечении безопасного проведения способа за счет контроля температурного режима и повышении экологической безопасности за счет исключения образования пылегазовой смеси. 2 з.п.ф-лы., 3 ил.

Формула изобретения RU 2 212 071 C2

1. Способ утилизации стружки из обедненного урана, заключающийся в окислении урана до закиси-окиси урана, отличающийся тем, что окисление ведут в две стадии: окисление урана до диоксида урана водой при 100±5oС с последующим окислением диоксида урана до закиси-окиси урана на воздухе при 700±10oС в течение 3-5 ч. 2. Способ по п. 1, отличающийся тем, что окисление урана до диоксида урана ведут путем кипячения в воде в течение 25-30 ч. 3. Способ по п. 1, отличающийся тем, что окисление урана до диоксида урана ведут в водяном паре в течение 4-6 ч.

Документы, цитированные в отчете о поиске Патент 2003 года RU2212071C2

Исходные требования на проектирование установки сжигания стружки
- Комбинат "Электрохимприбор", 2000
RU 94041038 A1, 20.09.1996
СПОСОБ ОБРАБОТКИ СОДЕРЖАЩИХ РАДИОНУКЛИДЫ УРАНА И ТОРИЯ МЕТАЛЛИЧЕСКИХ МАТЕРИАЛОВ 1994
  • Ермаков А.В.
  • Дмитриев В.А.
  • Пирогов С.М.
  • Богданов В.И.
  • Тимофеев Н.И.
  • Калиновский А.А.
  • Коняев А.Н.
  • Суслов А.П.
  • Фетисов В.И.
RU2122250C1
GB 1445458 A, 11.08.1976
US 5082603 A, 21.01.1992
УСТАНОВКА ДЛЯ РАСКРЯЖЕВКИ ХЛЫСТОВ 1994
  • Чекаров А.Г.
  • Дворников Б.А.
RU2074812C1

RU 2 212 071 C2

Авторы

Соловьев В.Ф.

Поляков Л.А.

Цивилин В.М.

Савухин С.А.

Пономарев-Степной Н.Н.

Дегальцев Ю.Г.

Плюхов А.Д.

Власов В.В.

Волков С.П.

Даты

2003-09-10Публикация

2001-05-07Подача