ДЕФОРМИРУЕМЫЙ ТЕРМИЧЕСКИ НЕУПРОЧНЯЕМЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ Российский патент 2003 года по МПК C22C21/06 

Описание патента на изобретение RU2212463C2

Предложенное изобретение относится к области металлургии сплавов, в частности деформируемых термически неупрочняемых алюминиевых сплавов, предназначенных для использования в виде деформированных полуфабрикатов в качестве конструкционного материала в судостроении, авиакосмической технике и транспортном машиностроении.

Существует большое количество деформируемых термически неупрочняемых сплавов на основе алюминия, например, известны сплавы 1550 и 1560 (см. ГОСТ 4784-97).

Недостатком этих сплавов являются низкие прочностные характеристики.

Наиболее близким по технической сущности и принятым нами за прототип является термически неупрочняемый сплав на основе алюминия, состав которого раскрыт в патенте US 5181969, МПК7 С 22 С 21/06; 26.01.1993. Данный сплав содержит следующие компоненты в мас. %: магний 2,0-8,0; марганец 0,3-1,5, бериллий 0,0001-0,01 и по меньшей мере один элемент, выбранный из группы, содержащей хром 0,05-0,3, ванадий 0,05-0,3, цирконий 0,05-0,3 и титан 0,005-0,15, один или в комбинации с бором 0,0001-0,05, алюминий - остальное.

Недостатком этого сплава является то, что высокий уровень прочности не может быть обеспечен при всех значениях приведенных концентраций из-за чрезвычайно широкого диапазона концентраций магния и других элементов.

Техническим результатом предлагаемого изобретения является создание сплава с гарантированными высокими прочностными свойствами, пластичностью и технологичностью при горячей и холодной деформации, которые достигаются тем, что в деформируемом термически неупрочняемом сплаве на основе алюминия, содержащем магний, марганец, хром, цирконий, титан и бериллий, компоненты взяты в следующих соотношениях, мас.%: магний 5,3-6,5; марганец 0,6-1,2; хром 0,01-0,25; цирконий 0,02-0,17; титан 0,01-0,15; бериллий 0,0001-0,005 при суммарном содержании марганца, хрома и циркония не более 1,5%.

Марганец является одним из наиболее эффективных упрочнителей и снижает склонность к межкристаллитной коррозии и коррозии под напряжением.

Легирование сплава хромом повышает механические свойства сплава, способствует более равномерному выделению β фазы и тем самым уменьшает склонность сплавов к коррозии под напряжением.

Введение циркония в сплав повышает температуру рекристаллизации и обеспечивает получение нерекристаллизованной структуры деформированных полуфабрикатов, обуславливает резкое измельчение зерна литого металла, снижает склонность к образованию трещин при сварке, повышает механические свойства сварных соединений.

Введение марганца, хрома и циркония в сумме не более 1,5% приводит к максимальному и равномерному выделению из твердого раствора дисперсных интерметаллидных фаз этих элементов, формируется нерекристаллизованная субструктура, что обеспечивает высокий уровень прочностных и пластических свойств деформированных полуфабрикатов и их сварных соединений.

При увеличении суммарного содержания марганца, хрома и циркония свыше 1,5% происходит снижение пластичности сплава до 8% и менее.

Высокая способность к деформируемости, обусловленная выбранным составом и структурой предлагаемого сплава, позволяет изготавливать из него обработкой давлением все виды металлургической продукции - листы, плиты, профили, панели, трубы, штамповки, поковки и другие полуфабрикаты.

Примеры
Из сплава предлагаемого состава с суммарным содержанием марганца, хрома и циркония, равным 1,47%; 1,11%; и 0,7% и запредельных уровнях, а также из сплава-прототипа (см. табл.1) изготавливали образцы для исследования.

Плавки производили в отражательной электропечи. В качестве шихты использовали алюминий марки А85, магний марки МГ, двойные лигатуры алюминий-марганец, алюминий-хром, алюминий-цирконий, алюминий-титан и алюминий-бериллий.

Расплав методом полунепрерывного литья отливали в плоские слитки сечением 60х240 мм. Слитки гомогенизировали при температуре 460oС в течение 24 ч. Затем из слитков изготавливали заготовки размером 55х230х350 мм, которые после нагрева до 440-470oС прокатывали на лист толщиной 10 мм. Полученный металл после отжига при температуре 310oС в течение 1 ч подвергался исследованию.

Механические свойства листов определяли при комнатной температуре при испытании стандартных образцов на растяжение. В качестве характеристик прочности брали предел прочности (σв) и предел текучести (σ0,2). Деформируемость металла при горячей обработке оценивали по результатам прокатки клиновых образцов и осадки цилиндрических образцов, вырезанных из слитка, при температуре 420oС. Для оценки деформируемости при прокатке клиновых образцов использовали критерий К=li/lо, где lo - полная длина деформированного образца, li - длина деформированной части образца до первой трещины. Для оценки деформируемости при осадке брали относительную деформацию ε=(ho-hi)/ho, где ho - начальная высота образца, hi - высота образца в момент появления на боковой поверхности первой трещины.

Результаты механических испытаний и данные по деформируемости сплавов при температуре горячей пластической обработки приведены в табл.2.

Как видно из табл.2, предлагаемый сплав обладает более высокими прочностными свойствами по сравнению со сплавом-прототипом и высокой технологической пластичностью.

Технический эффект от использования изобретения по сравнению с прототипом заключается в снижении массы конструкций на 10-15%, повышении полезной нагрузки на 7-10%, увеличении срока службы транспортных средств, уменьшении расхода топлива или других видов энергии на 10-15%.

Похожие патенты RU2212463C2

название год авторы номер документа
ДЕФОРМИРУЕМЫЙ ТЕРМИЧЕСКИ НЕУПРОЧНЯЕМЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ 1995
  • Елагин В.И.
  • Захаров В.В.
  • Филатов Ю.А.
  • Торопова Л.С.
  • Доброжинская Р.И.
  • Андреев Г.Н.
  • Золоторевский Ю.С.
  • Чижиков В.В.
RU2081934C1
СОСТАВ СВАРОЧНОЙ ПРОВОЛОКИ НА ОСНОВЕ АЛЮМИНИЯ 2009
  • Павлова Вера Ивановна
  • Орыщенко Алексей Сергеевич
  • Осокин Евгений Петрович
  • Зыков Сергей Алексеевич
  • Кучкин Василий Васильевич
RU2393073C1
ДЕФОРМИРУЕМЫЙ ТЕРМИЧЕСКИ НЕУПРОЧНЯЕМЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ 2004
  • Андреев Геннадий Николаевич
  • Барахтина Наталия Николаевна
  • Горынин Игорь Васильевич
  • Калугина Карина Васильевна
  • Колпаков Игорь Николаевич
  • Кучкин Василий Васильевич
  • Ногай Михаил Николаевич
  • Осокин Евгений Петрович
  • Рыбин Валерий Васильевич
RU2268319C1
ВЫСОКОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО 2014
  • Сенаторова Ольга Григорьевна
  • Каблов Евгений Николаевич
  • Антипов Владислав Валерьевич
  • Сомов Андрей Валерьевич
  • Блинова Надежда Евгеньевна
RU2556849C1
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ ЭТОГО СПЛАВА 2000
  • Фридляндер И.Н.
  • Каблов Е.Н.
  • Сетюков О.А.
  • Ручьева Н.В.
RU2184165C2
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ ЭТОГО СПЛАВА 2010
  • Дриц Александр Михайлович
  • Орыщенко Алексей Сергеевич
  • Григорян Валерий Арменакович
  • Осокин Евгений Петрович
  • Барахтина Наталия Николаевна
  • Соседков Сергей Михайлович
  • Арцруни Арташес Андреевич
  • Хромов Александр Петрович
  • Цургозен Леонид Александрович
RU2431692C1
ДЕФОРМИРУЕМЫЙ ТЕРМИЧЕСКИ НЕУПРОЧНЯЕМЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ 1995
  • Филатов Ю.А.
  • Елагин В.И.
  • Захаров В.В.
RU2082809C1
ВЫСОКОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО 2000
  • Фридляндер И.Н.
  • Каблов Е.Н.
  • Сенаторова О.Г.
  • Легошина С.Ф.
  • Самонин В.Н.
  • Сухих А.Ю.
  • Кохорст Иоганнес
RU2184166C2
Деформируемый термически неупрочняемый сплав на основе алюминия 2016
  • Захаров Валерий Владимирович
  • Байдин Николай Григорьевич
  • Филатов Юрий Аркадьевич
  • Бочвар Сергей Георгиевич
  • Доброжинская Руслана Ивановна
RU2639903C2
Деформируемый термически неупрочняемый сплав на основе алюминия 2016
  • Байдин Николай Григорьевич
  • Филатов Юрий Аркадьевич
RU2623932C1

Иллюстрации к изобретению RU 2 212 463 C2

Реферат патента 2003 года ДЕФОРМИРУЕМЫЙ ТЕРМИЧЕСКИ НЕУПРОЧНЯЕМЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ

Изобретение относится к металлургии деформируемых термически неупрочняемых алюминиевых сплавов, предназначенных для использования в виде деформированных полуфабрикатов в качестве конструкционного материала в судостроении, авиакосмической технике и транспортном машиностроении. Предложенный сплав содержит следующие компоненты, мас.%: магний 5,3-6,5, марганец 0,6-1,2, хром 0,01-0,25, цирконий 0,02-0,17, титан 0,01-0,15, бериллий 0,0001-0,005, алюминий остальное, при этом суммарное содержание марганца, хрома и циркония не более 1,5%. Техническим результатом изобретения является создание сплава с гарантированными высокими прочностными средствами, пластичностью и технологичностью при горячей и холодной деформации. 2 табл.

Формула изобретения RU 2 212 463 C2

Деформируемый термически неупрочняемый сплав на основе алюминия. содержащий магний, марганец, хром, цирконий, титан и бериллий, отличающийся тем, что в нем компоненты взяты в следующих соотношениях, мас. %:
Магний - 5,3-6,5
Марганец - 0,6-1,2
Хром - 0,01-0,25
Цирконий - 0,02-0,17
Титан - 0,01-0,15
Бериллий - 0,0001-0,005
Алюминий - Остальное
при суммарном содержании марганца, хрома и циркония не более 1,5%.

Документы, цитированные в отчете о поиске Патент 2003 года RU2212463C2

US 5181969 А, 26.01.1993
ДЕФОРМИРУЕМЫЙ ТЕРМИЧЕСКИ НЕУПРОЧНЯЕМЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ 1995
  • Елагин В.И.
  • Захаров В.В.
  • Филатов Ю.А.
  • Торопова Л.С.
  • Доброжинская Р.И.
  • Андреев Г.Н.
  • Золоторевский Ю.С.
  • Чижиков В.В.
RU2081934C1
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ ДЛЯ СВАРКИ ПЛАВЛЕНИЕМ 1995
  • Золоторевский Ю.С.
  • Макаров А.Г.
  • Махмудова Н.А.
  • Захаров В.В.
  • Филатов Ю.А.
  • Панасюгина Л.И.
RU2082808C1
US 5540791 А, 30.07.1996
БЕСКОНТАКТНАЯ ИНТЕГРАЛЬНАЯ МИКРОСХЕМА 2003
  • Конявский В.А.
  • Лившиц В.И.
RU2245591C1
Е
Алюминий: свойства и физическое металловедение
- М.: Металлургия, 1989, с.354.

RU 2 212 463 C2

Авторы

Андреев Г.Н.

Бакулин А.В.

Барахтина Н.Н.

Захаров В.В.

Золоторевский Ю.С.

Кучкин В.В.

Осокин Е.П.

Пась А.И.

Филатов Ю.А.

Чижиков В.В.

Даты

2003-09-20Публикация

2001-07-06Подача