Деформируемый термически неупрочняемый сплав на основе алюминия Российский патент 2017 года по МПК C22C21/06 

Описание патента на изобретение RU2639903C2

Предлагаемое изобретение относится к области металлургии, в частности к деформируемым сплавам на основе алюминия, предназначенным для использования в виде деформированных полуфабрикатов, преимущественно в виде листов, в качестве конструкционного материала в авиакосмической технике, судостроении, транспортном машиностроении и других отраслях промышленности.

Известен деформируемый термически неупрочняемый сплав на основе алюминия марки АМг61, применяемый в виде деформированных полуфабрикатов в качестве конструкционного материала, содержащий, мас. %:

Магний 5,5-6,5 Марганец 0,8-1,1 Цирконий 0,02-0,1 Бериллий 0,0001-0,005 Медь, не более 0,05 Цинк, не более 0,2 Железо, не более 0,2 Кремний, не более 0,2 Алюминий Остальное

(см. Алюминиевые сплавы. Промышленные деформируемые спеченные и литейные алюминиевые сплавы. Справочное руководство. М.: Металлургия. 1972. С. 44-45).

Однако существующий сплав имеет низкие прочностные свойства.

Известен деформируемый термически неупрочняемый сплав на основе алюминия, применяемый в виде деформированных полуфабрикатов в качестве конструкционного материала (см. патент RU 2081934, МПК С22С 21/06 - прототип), следующего химического состава, мас. %:

Магний 5,3-6,3 Марганец 0,2-0,7 Цирконий 0,02-0,15 Бериллий 0,0001-0,005 Скандий 0,17-0,35

По крайней мере один металл из группы, содержащей

Титан и хром 0,01-0,25 Алюминий Остальное

Недостатком сплава-прототипа является недостаточно высокая прочность и низкая пластичность изготовленных из него листов, что утяжеляет конструкцию, изготовленную из листовых материалов, и снижает ее надежность. Также недостатком сплава-прототипа является довольно высокое содержание в нем дорогостоящего скандия, что удорожает сплав.

Предлагается деформируемый термически неупрочняемый сплав на основе алюминия, содержащий магний, марганец, цирконий, бериллий, скандий и титан, который дополнительно содержит железо и неизбежные примеси, основными из которых являются кремний, цинк и медь, при следующем соотношении компонентов, мас. %:

Магний 5,3-6,3 Марганец 0,3-0,6 Цирконий 0,11-0,16 Бериллий 0,0001-0,005 Скандий 0,11-0,16 Титан 0,01-0,03 Железо 0,06-0,18 Алюминий и неизбежные примеси, в том числе кремний в количестве не более 0,1 мас. %, Цинк в количестве не более 0,06 мас. % Медь в количестве не более 0,06 мас. %, При суммарном содержании примесей кремния, цинка и меди не более 0,18 мас. % Остальное,

при этом величина отношения содержания циркония к содержанию скандия должна быть от 0,9 до 1,1, а величина отношения содержания железа к содержанию кремния должна быть равна или больше единицы.

Предлагаемый сплав отличается от известного тем, что он дополнительно содержит железо и неизбежные примеси, основными из которых являются кремний, цинк и медь, при следующем соотношении компонентов, мас. %:

Магний 5,3-6,3 Марганец 0,3-0,6 Цирконий 0,11-0,16 Бериллий 0,0001-0,005 Скандий 0,11-0,16 Титан 0,01-0,03 Железо 0,06-0,18 Алюминий и неизбежные примеси, в том числе кремний в количестве не более 0,1 мас. %, Цинк в количестве не более 0,06 мас. % Медь в количестве не более 0,06 мас. % При суммарном содержании примесей кремния, цинка и меди не более 0,18 мас. % Остальное,

при этом величина отношения содержания циркония к содержанию скандия должна быть от 0,9 до 1,1, а величина отношения содержания железа к содержанию кремния должна быть равна или больше единицы.

Отличием предлагаемого сплава является также то, что соотношение между содержанием циркония и скандия у него близко к единице, а соотношение между содержанием железа и неизбежной примеси кремния должно быть не менее единицы. Кроме того, предлагаемый сплав имеет более низкое содержание скандия.

Технический результат - повышение прочности и пластичности, что позволяет снизить массу конструкции и повысить ее надежность, а также снижение стоимости сплава, что позволит снизить стоимость элементов конструкции, изготавливаемой из предлагаемого сплава, и конструкции в целом.

При предлагаемом содержании и соотношении компонентов в процессе кристаллизации слитка сплава предлагаемого состава образуется пересыщенный твердый раствор основных легирующих компонентов (Mg, Mn, Zr, Sc) в алюминии. При последующих неизбежных технологических нагревах слитка происходит распад пересыщенного твердого раствора, при этом продуктами распада являются дисперсные наноразмерные частицы фазы Al3(Sc,Zr), оказывающие сильное упрочняющее действие как непосредственно, так и за счет формирования в деформированном полуфабрикате нерекристаллизованной (полигонизованной) структуры. При предлагаемом соотношении между содержанием скандия и циркония сплав максимально склонен к пересыщению твердого раствора этими элементами, что обеспечивает максимальное упрочнение при последующем распаде твердого раствора. Основная часть магния и марганца остается в матрице сплава, обеспечивая твердорастворное упрочнение. Титан входит в состав упрочняющей фазы Al3(Sc,Zr), растворяясь в ней и способствуя тем самым повышению прочности сплава. При предлагаемом содержании Sc и Zr в сплаве и предлагаемом соотношении между содержанием этих элементов образовавшаяся при распаде твердого раствора фаза Al3(Sc,Zr) обладает высокой термической стабильностью, что позволяет повысить температуру технологических нагревов и предотвратить возможное разупрочнение материала вследствие коагуляции продуктов распада. Добавка железа в сплав формирует частицы фазы Al(Fe,Mn) кристаллизационного происхождения, способствующие упрочнению сплава. Микродобавка бериллия предохраняет плавку от окисления и выгорания магния, что также способствует упрочнению сплава. При предлагаемом содержании Sc и Zr в сплаве и предлагаемом соотношении между содержанием этих компонентов снижается вероятность образования грубых первичных интерметаллидов Al3(Sc,Zr), что способствует повышению пластичности сплава. Повышению пластичности сплава способствует также ограничение содержания неизбежных примесей кремния, цинка и меди. Предлагаемое соотношение между содержанием железа и кремния способствует улучшению литейных свойств сплава. Снижение содержания дорогостоящего скандия в предлагаемом сплаве и его частичная замена цирконием, стоимость которого на порядок ниже стоимости скандия, позволяет снизить стоимость предлагаемого сплава и изготавливаемых из него деформированных полуфабрикатов.

Пример

Получили предлагаемый сплав из шихты, состоящей из алюминия А7, магния Мг90 и двойных лигатур алюминий-марганец, алюминий-цирконий, алюминий-бериллий, алюминий-скандий, алюминий-титан и алюминий-железо. Сплав готовили в электрической тигельной печи и отливали плоские слитки размером 16×160×200 мм. Химический состав сплава приведен в таблице 1.

Слитки гомогенизировали, затем механически обрабатывали до толщины 14 мм, после чего нагревали до 400°С и прокатывали вгорячую до толщины 6 мм, затем при 100°С - до толщины 2,8 мм. Полученные листы толщиной 2,8 мм отжигали при 320°С в течение 1 ч. Отожженные листы испытывали при комнатной температуре с определением предела прочности σВ и относительного удлинения δ на стандартных плоских образцах с шириной рабочей части 10 мм (ГОСТ 11701-84), вырезанных в долевом направлении. Также проводили испытания изготовленных тем же способом листов из сплава-прототипа, содержащего, мас. %: магний 5,8, марганец 0,41, цирконий 0,13, бериллий 0,001, скандий 0,19, титан 0,04, алюминий - остальное. Результаты испытаний листов приведены в таблице 2.

Таким образом, предлагаемый сплав имеет примерно на 3% более высокий предел прочности и примерно в 1,3 раза более высокое относительное удлинение, что позволит примерно на 3% снизить массу конструкции и соответственно повысить характеристики весовой отдачи, а также позволит повысить надежность конструкций, изготовленных из тонкого листа, например, топливных баков, что крайне важно для космической техники. Кроме того, за счет того, что предлагаемый сплав содержит в среднем на 48% меньше дорогостоящего скандия, его стоимость может быть уменьшена соответственно.

Похожие патенты RU2639903C2

название год авторы номер документа
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ 2022
  • Манн Виктор Христьянович
  • Крохин Александр Юрьевич
  • Рябов Дмитрий Константинович
  • Вахромов Роман Олегович
  • Градобоев Александр Юрьевич
  • Иванова Анна Олеговна
  • Никитина Маргарита Александровна
RU2800435C1
Деформируемый термически неупрочняемый сплав на основе алюминия 2016
  • Байдин Николай Григорьевич
  • Филатов Юрий Аркадьевич
RU2623932C1
КОНСТРУКЦИОННЫЙ ДЕФОРМИРУЕМЫЙ ТЕРМИЧЕСКИ НЕУПРОЧНЯЕМЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ 2015
  • Филатов Юрий Аркадьевич
  • Захаров Валерий Владимирович
  • Панасюгина Людмила Ивановна
  • Байдин Николай Григорьевич
  • Лапин Петр Георгиевич
  • Доброжинская Руслана Ивановна
  • Звонков Александр Анатольевич
  • Молочев Валерий Петрович
  • Овсянников Борис Владимирович
  • Хамнагдаева Евгения Александровна
RU2599590C1
ДЕФОРМИРУЕМЫЙ ТЕРМИЧЕСКИ НЕУПРОЧНЯЕМЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И ИЗДЕЛИЕ ИЗ НЕГО 2008
  • Овсянников Борис Владимирович
  • Захаров Валерий Владимирович
  • Филатов Юрий Аркадьевич
  • Чертовиков Владимир Михайлович
RU2387725C2
ВЫСОКОПРОЧНЫЙ ДЕФОРМИРУЕМЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ С ПОНИЖЕННОЙ ПЛОТНОСТЬЮ И СПОСОБ ЕГО ОБРАБОТКИ 2011
  • Елагин Виктор Игнатович
  • Захаров Валерий Владимирович
  • Ростова Татьяна Дмитриевна
  • Швечков Евгений Иванович
  • Фисенко Ирина Антонасовна
  • Кириллова Лидия Петровна
RU2468107C1
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ 2019
  • Манн Виктор Христьянович
  • Алабин Александр Николаевич
  • Хромов Александр Петрович
  • Вальчук Сергей Викторович
  • Крохин Александр Юрьевич
  • Фокин Дмитрий Олегович
  • Вахромов Роман Олегович
  • Юрьев Павел Олегович
RU2735846C1
ВЫСОКОПРОЧНЫЙ ДЕФОРМИРУЕМЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ СИСТЕМЫ Al-Zn-Mg-Cu ПОНИЖЕННОЙ ПЛОТНОСТИ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО 2013
  • Захаров Валерий Владимирович
  • Телешов Виктор Владимирович
  • Головлёва Анна Петровна
RU2514748C1
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ ЭТОГО СПЛАВА 2010
  • Дриц Александр Михайлович
  • Орыщенко Алексей Сергеевич
  • Григорян Валерий Арменакович
  • Осокин Евгений Петрович
  • Барахтина Наталия Николаевна
  • Соседков Сергей Михайлович
  • Арцруни Арташес Андреевич
  • Хромов Александр Петрович
  • Цургозен Леонид Александрович
RU2431692C1
ВЫСОКОПРОЧНЫЙ ДЕФОРМИРУЕМЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ СИСТЕМЫ Al-Zn-Mg-Cu ПОНИЖЕННОЙ ПЛОТНОСТИ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО 2014
  • Захаров Валерий Владимирович
  • Телешов Виктор Владимирович
  • Бочвар Сергей Георгиевич
  • Чугункова Галина Михайловна
  • Головлёва Анна Петровна
RU2581953C1
ВЫСОКОПРОЧНЫЙ ДЕФОРМИРУЕМЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И ИЗДЕЛИЕ ИЗ НЕГО 2008
RU2394113C1

Реферат патента 2017 года Деформируемый термически неупрочняемый сплав на основе алюминия

Изобретение относится к области металлургии, в частности к деформируемым сплавам на основе алюминия, предназначенным для использования в виде деформированных полуфабрикатов, преимущественно в виде листов, в качестве конструкционного материала. Деформируемый термически неупрочняемый сплав на основе алюминия содержит, мас. %: магний 5,3-6,3; марганец 0,3-0,6; цирконий 0,11-0,16; бериллий 0,0001-0,005; скандий 0,11-0,16; титан 0,01-0,03; железо 0,06-0,18; алюминий и неизбежные примеси - остальное, в том числе кремний не более 0,1, цинк не более 0,06 и медь не более 0,06, при их суммарном содержании не более 0,18, при этом отношение содержания циркония к содержанию скандия составляет от 0,9 до 1,1, а отношение содержания железа к содержанию кремния равно или больше единицы. Техническим результатом является повышение прочности и пластичности сплава. 1 пр., 2 табл.

Формула изобретения RU 2 639 903 C2

Деформируемый термически неупрочняемый сплав на основе алюминия, содержащий магний, марганец, цирконий, бериллий, скандий, титан, алюминий и неизбежные примеси отличающийся тем, что он дополнительно содержит железо при следующем соотношении компонентов, мас. %:

магний 5,3-6,3 марганец 0,3-0,6 цирконий 0,11-0,16 бериллий 0,0001-0,005 скандий 0,11-0,16 титан 0,01-0,03 железо 0,06-0,18 алюминий и неизбежные примеси остальное,

в том числе

кремний не более 0,1 цинк не более 0,06 медь не более 0,06,

при их суммарном содержании не более 0,18, при этом отношение содержания циркония к содержанию скандия составляет от 0,9 до 1,1, а отношение содержания железа к содержанию кремния равно или больше единицы.

Документы, цитированные в отчете о поиске Патент 2017 года RU2639903C2

0
SU158769A1
ДЕФОРМИРУЕМЫЙ ТЕРМИЧЕСКИ НЕУПРОЧНЯЕМЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ 2013
  • Задерей Александр Геннадьевич
  • Ковалев Геннадий Дмитриевич
  • Филатов Юрий Аркадьевич
  • Захаров Валерий Владимирович
  • Байдин Николай Григорьевич
  • Дегтярь Владимир Григорьевич
  • Чернов Сергей Сергеевич
  • Звонков Александр Анатольевич
  • Махов Сергей Владимирович
  • Доброжинская Руслана Ивановна
  • Овсянников Борис Владимирович
  • Семовских Станислав Валерьевич
RU2513492C1
0
SU218165A1
КОНСТРУКЦИОННЫЙ ДЕФОРМИРУЕМЫЙ ТЕРМИЧЕСКИ НЕУПРОЧНЯЕМЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ 2003
  • Филатов Ю.А.
  • Давыдов В.Г.
  • Елагин В.И.
  • Захаров В.В.
  • Швечков Е.И.
  • Панасюгина Л.И.
  • Доброжинская Р.И.
RU2233345C1
Устройство для сопряжения интерфейсов ввода-вывода с регистратором 1987
  • Гладков Федор Васильевич
  • Доля Александр Давидович
  • Елисеев Виктор Кириллович
  • Захарова Маргарита Яковлевна
  • Кириченко Людмила Ивановна
  • Шепелева Татьяна Алексеевна
SU1413636A1

RU 2 639 903 C2

Авторы

Захаров Валерий Владимирович

Байдин Николай Григорьевич

Филатов Юрий Аркадьевич

Бочвар Сергей Георгиевич

Доброжинская Руслана Ивановна

Даты

2017-12-25Публикация

2016-06-07Подача