Изобретение относится к области гетерогенно-каталитических превращений органических соединений и, более конкретно, к каталитическому превращению алифатических спиртов в смесь изоалканов C4-C16.
Фракции алканов изостроения, как известно, являются наиболее ценными компонентами моторного, арктического дизельного и авиационного топлив, обеспечивая высокое октановое число, низкую температуру застывания, а также повышенную теплотворную способность наряду с высокой стабильностью при хранении.
Помимо топлив изоалканы находят большой спрос в качестве растворителей и разбавителей многих органических промышленных материалов.
Учитывая, что одним из основных источников загрязнения окружающей среды является транспорт, в последнее время особые требования предъявляются к составу топлив. Этим обусловлен дополнительно повышенный спрос на экологически наиболее приемлемые изоалканы.
В связи с существенным снижением запасов парафинистых и повышением объемов добычи сернистых и высокосернистых нефтей традиционные способы получения алканов из нефтяного сырья путем его переработки по топливному профилю становятся энергоемкими и дорогостоящими.
Постоянно растущий парк транспортных средств, потребляющий органическое топливо, не может быть обеспечен лишь за счет облагораживания прямогонных фракций нефти.
В этой связи для обеспечения топливного баланса используется комплекс процессов, предназначенный для эффективной переработки тяжелых нефтяных фракций, а также частичной переработки нефтяных остатков. Традиционная схема переработки нефти по топливному профилю состоит из многих энергоемких и дорогостоящих процессов, по крайней мере, включающих гидрообессеривание вакуумного газойля, каталитический и (или) гидрогрекинг обессеренного сырья, с последующими процессами гидроизомеризации и риформинга. Следует отметить, что в процессах риформинга, а также в процессах гидроизомеризации наряду с изоалканами образуются достаточно весомые количества алкилароматических углеводородов, на которые из экологических соображений в настоящее время в развитых странах наложены ограничения. В этой связи уже начиная с 80-х годов прошлого столетия стала очевидной необходимость развития синтетических направлений, альтернативных нефтяному и предназначенных для получения высокооктановых компонентов топлив.
Одним из наиболее перспективных таких направлений считается так называемый Mobil-процесс, в одной из модификаций которого парафиновые углеводороды до С5 получают в две стадии, осуществляя на первой стадии синтез метанола в присутствии медь-цинк или хром-цинк-алюминиевых катализаторов и на второй стадии, в присутствии цеолитных катализаторов, превращения метанола в парафиновую фракцию, содержащую до 20% алканов изостроения [US 4086262, 25.04.1978] . Этот способ нами принят в качестве аналога. К недостаткам известного способа можно отнести невысокую концентрацию изоалканов, а также узкий фракционный состав легкой части бензиновой фракции.
В работе А. К. Talurdar at al. [HZSM-5 catalysed conversion of agueons ethanol to hydrocarbous. Appl. Catal., A:General, 148, 357 (1997)] была показана возможность получения углеводородной бензиновой и дизельной фракции путем пропускания этанола через цеолитный катализатор ZSM-5 при температуре 400-450oС и давлении водорода до 10 атм. Однако жидкие продукты реакции согласно этому способу состоят из ароматических углеводородов.
Превращение низших алифатических спиртов С2-С5 в присутствии промышленных полифункциональных никель- и медьсодержащих катализаторов исследовалось в работе [Закономерности превращения спиртов на медьсодержащих катализаторах. Материалы МП Международной Научно-технической конференции "Химические реактивы и процессы малотоннажной химии"/ Вып.3, Тула, Из-во Тул. гос. пед. ун-та им. Л.Н. Толстого, 2000. C. 156]. В этой работе показано, что в присутствии металлооксидных катализаторов реакции этерификации и гомогенизации являются основными маршрутами каталитических превращений алифатических спиртов С2-С5. В результате протекания этих реакций, главным образом, образуются кислородсодержащие продукты: простые и сложные эфиры. альдегиды, кетоны, ацетали, а также алифатические спирты, содержащие большее число углеродных атомом в цепи углеводородного остова по сравнению с исходными реагентами.
Ближайшим известным решением аналогичной задачи является способ получения смеси изоалканов C4-C16 путем контактирования алифатического спирта - этанола в среде диоксида углерода при повышенных температуре и давлении (300oС, 15 атм) и объемной скорости 0,2 ч-1 с каталитической композицией, состоящей из гидридной фазы железотитанового интерметаллического соединения, модифицированного металлами IV-VII групп, и γ-оксида алюминия, взятых в массовом соотношении 10:1 [М.В.Цодиков и др. Совместные превращения диоксида углерода и этанола в присутствии интерметаллида TiFe0,95Zr0,03Mo0,02, Pd/Si02 и Аl2О3. Изв. РАН (сер. хим.) 7, 1360, 1998].
Согласно известному способу при использовании каталитической композиции, содержащей в качестве гидридной фазы железотитановое интерметаллическое соединение, модифицированное металлами IV-VII групп, в частности [TiFe0,95Zr0,03Mo0,02] H2 [ГФИС], при достаточно высокой конверсии этанола, равной 34%, образуется до 40% парафиновой фракции C8-C15, содержащей до 20% изоалканов (моно- и диметилзамещенных).
Задачей настоящего изобретения является повышение выхода смеси изоалканов С4-C16.
Для решения поставленной задачи предложен настоящий способ получения смеси изоалканов C4-C16, предусматривающий два варианта его осуществления.
Согласно первому варианту способ получения смеси изоалканов C4-C16 заключается в контактировании 40-60%-ного водного раствора этанола в среде диоксида углерода при температуре 350-380oС, давлении 8-12 атм и объемной скорости 0,2-0,8 ч-1 с каталитической композицией, состоящей из гидридной фазы железотитанового интерметаллического соединения, модифицированного металлами IV-VII групп, и γ-оксида алюминия, взятых в массовом соотношении 10:1.
Второй вариант осуществления способа по изобретению заключается в контактировании алифатического спирта, в качестве которого используют 40-60%-ный водный раствор смеси этанола, изобутанола и изопентанола, взятых в массовом отношении 6: 1:2, с каталитической композицией, состоящей из гидридной фазы железотитанового интерметаллического соединения, модифицированного металлами IV-VII групп, γ- оксида алюминия и промышленного алюмоплатинового катализатора, взятых в массовом соотношении 10:1:1, в среде инертного газа при 300-420oС, давлении 30-80 атм и объемной скорости 0,2-0,8 ч-1.
Предложенный способ согласно любому варианту реализации предусматривает использование каталитической композиции, содержащей в качестве гидридной фазы железотитановое интерметаллическое соединение общей формулы Ti1-xFe1-yMzHn, где М - один или несколько элементов из группы: Ti, Zr, Hf, V, Nb, Та, Cr, Mo, Mn, Fe, Co, Ni, Th, Cu, Y; лантаниды или их смесь в виде мишметалла; x= 0-0,3; у=0-0,7; z=0-0,7; n>0. [Мордовин В.П. и др. II Международное совещание по использованию энергоаккумулирующих веществ (ЭАВ) в экологии, транспорте и космосе, Москва, 2001, с. 121-127].
В способе согласно изобретению предпочтительно используют
[TiFe0,95Zr0,03Mo0,02]H2,
[TiFe0,95Mn0,03Cr0,02]H2.
Способ получения смеси изоалканов C4-C16 (второй вариант) предусматривает дополнительное использование промышленного алюмоплатинового катализатолра марок (АП-56, АП-64; [Ал.А. Петров. Химия алканов. М.: Наука, 1974, с. 131-133]).
Использование водных растворов алифатитческих спиртов позволяет применять водные растворы, получаемые в больших количествах в процессах ферментации биологического сырья, в том числе, зеленой массы, являющегося возобновляемым сырьем, что делает предложенный способ перспективным.
Нижеследующие примеры иллюстрируют настоящее изобретение, но никоим образом не ограничивают его область.
Пример 1.
50%-ный водный раствор этанола пропускают через 66 см3 катализатора, состоящего из смеси 60 см3 гидридной фазы интерметаллического соединения [TiFe0,95Zr0,03Mo0,02] H2 и 6 см3 γ-Аl2О3 (каталитическая композиция 1) при температуре 350oС, с объемной скоростью 0,5 ч-1 под давлением СО2 10 атм. В полученном продукте верхний парафиновый слой отделяют от воды, сушат над CaCl2, жидкий продукт отфильтровывают и перегоняют до температуры 250oС. Отогнанный органический субстрат анализируют методом хромато-масс-спектрометрии и ГЖХ в режиме линейного программирования с использованием стеклянной колонки (50 мх0,2 мм) с нанесенной фазой SE-30 и ПИД. Результаты анализа показали, что конверсия этанола составляет 70%, 5% из которых приходится на газообразные и 95% на жидкие продукты. В составе органических продуктов реакции содержится 40% диэтилового эфира и 60% парафиновой фракции C8-C15, содержащей до 45% изоалканов, причем 30% из них приходится на диметизамещенные, а 15% на монометилзамещенные изопарафины.
Пример 2
Проводят превращение 50% водной смеси спиртов, состоящей из 30% этанола, 5% изобутанола и 10% изопентанола (массовое отношение 6:1:2) путем ее пропускания через каталитическую композицию, состоящую из 60 г гидридной формы интерметаллического соединения [TiFe0,95Zr0,03Mo0,02]H2, 6 г Pt/Аl2О3 (АП-64), при 350oС, давлении Аr 50 атм с объемной скоростью 0,5 ч-1 Продукты реакции имели следующий состав: газообразные соединения 15%, жидкие 40%, из которых 25% составляет алкановая фракция C4-C16, 15% приходится на кислородсодержащие соединения, остальное - вода. Алкановая фракция содержит 80% изоалканов.
Пример 3 (сравнительный)
Следуя методике, описанной в примере 1, 50% водный раствор этанола в атмосфере Аr (50 атм) пропускают через стационарный слой каталитической композиции 1 при 350oС и объемной скорости 0,5 ч-1. Данные анализа показали, что конверсия этанола составляет 50%, из которых ~8% приходится на этилен. В жидких продуктах содержание парафиновой фракции уменьшилось до 20%, в то время как содержание диэтилового эфира возросло до 70%, причем 10% приходится на ацетальдегид.
Примеры 4 и 5 (сравнительные)
Следуя методике, описанной в примере 1, 50% водный раствор подвергают превращению в присутствии каталитической композиции 1 при давлении 50 атм в среде CO2 или Ar. Из результатов анализа следует, что в среде СО2 содержание парафиновых углеводородов составляет 20%, из которых 15% приходится на изоалканы C4-C15, в то время как в среде Аr суммарное содержание парафинов составляет лишь 7%.
Пример 6
Способ осуществляют аналогично примеру 1, но в качестве гидридной фазы интерметаллического соединения используют [TiFe0,95Mn0,03Cr0,02]H2. Согласно результатам анализа конверсия этанола составляет 60%, 4% из которых приходится на газообразные и 96% на жидкие продукты. В составе органических продуктов реакции содержится 50% диэтилового эфира и ~50% парафиновой фракции C7-C15, содержащей до 40% изоалканов, причем 20% из них приходится на диметизамещенные, и 20% на монометилзамещенные изопарафины.
Пример 7
Способ осуществляют аналогично примеру 2, но в качестве гидридной фазы интерметаллического соединения используют [TiFe0,95Mn0,03Cr0,02]H2. Продукты реакции имели следующий состав: газообразные соединения 15%, жидкие 50%, из которых 35% составляет алкановая фракция C4-C16, 15% приходится на кислородсодержащие соединения, остальное - вода. Алкановая фракция содержит 75% изоалканов.
Таким образом, в предлагаемом изобретении показана возможность получения разветвленных алканов из водных растворов алифатических спиртов в результате осуществления впервые обнаруженной реакции восстановительной дегидратации этанола, изобутанола и изопентанола. Как следует из приведенных примеров, углеводороды изостроения содержат, как минимум, удвоенное число углеродных атомов по сравнению с их числом в исходном спирте. Предлагаемый способ открывает новый путь получения высокоразветвленных алканов, имеющих большой спрос в различных областях техники.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ ИЗОАЛКАНОВ C ИЛИ C | 2002 |
|
RU2220940C1 |
СПОСОБ ПОЛУЧЕНИЯ СМЕСИ ИЗОАЛКАНОВ C-C | 2008 |
|
RU2376273C1 |
СПОСОБ ПЕРЕРАБОТКИ ПРОДУКТОВ ФЕРМЕНТАЦИИ РАСТИТЕЛЬНОЙ БИОМАССЫ В АЛКАНОВЫЕ УГЛЕВОДОРОДЫ | 2008 |
|
RU2385855C1 |
СПОСОБ ПЕРЕРАБОТКИ СМЕСЕЙ АЛИФАТИЧЕСКИХ СПИРТОВ, СОДЕРЖАЩИХ ГЛИЦЕРИН | 2008 |
|
RU2405762C2 |
КАТАЛИЗАТОР И СПОСОБ ПОЛУЧЕНИЯ АЛКАНО-ОЛЕФИНОВЫХ УГЛЕВОДОРОДОВ В ЕГО ПРИСУТСТВИИ | 2008 |
|
RU2391133C1 |
КАТАЛИЗАТОР И СПОСОБ ПОЛУЧЕНИЯ АЛИФАТИЧЕСКИХ УГЛЕВОДОРОДОВ ИЗ РАПСОВОГО МАСЛА | 2014 |
|
RU2592849C2 |
СОСТАВ ДЛЯ ХИМИЧЕСКОГО ИНДИКАТОРА ТЕМПЕРАТУРЫ И ВРЕМЕНИ | 1999 |
|
RU2154261C1 |
СОСТАВ ДЛЯ ХИМИЧЕСКОГО ОСАЖДЕНИЯ КОБАЛЬТА | 2001 |
|
RU2198242C1 |
СПОСОБ КОНВЕРСИИ ИЗОБУТАНОЛА | 2021 |
|
RU2768153C1 |
СПОСОБ ПОЛУЧЕНИЯ α-КРИСТОБАЛИТА | 1998 |
|
RU2154023C2 |
Изобретение относится к области гетерогенно-каталитических превращений органических соединений и, более конкретно, к каталитическому превращению алифатических спиртов в смесь изоалканов С4-С16. Сущность: описаны два варианта способа получения смеси изоалканов С4-С16. Согласно первому варианту 40-60%-ный водный раствор этанола контактирует в среде диоксида углерода при 350-380oС, давлении 8-12 атм и объемной скорости 0,2-0,8 ч-1 с каталитической композицией, состоящей из гидридной фазы железотитанового интерметаллического соединения, модифицированного металлами IV-VII групп, и γ-оксида алюминия, взятых в массовом соотношении 10:1. Второй вариант осуществления способа предусматривает контактирование 40-60%-ного водного раствора смеси этанола, изобутанола и изопентанола, взятых в массовом соотношении 6:1:2, с каталитической композицией, описанной выше и дополнительно содержащей промышленный алюмоплатиновый катализатор при массовом соотношении компонентов в композиции 10:1:1, в среде инертного газа при 300-420oС, давлении 30-80 атм и объемной скорости 0,2-0,8 ч-1. Технический результат - повышение выхода смеси изоалканов (до 45%) и расширение сырьевой базы используемых алифатических спиртов. 2 с. и 1 з.п.ф-лы.
М.В | |||
Цодиков и др | |||
Совместные превращения диоксида углерода и этанола в присутствии интерметаллида TiFeZrMo, PD/SiO и AlO | |||
Изв | |||
РАН сер.хим., №7, 1360, 1998 | |||
СПОСОБ КОНВЕРСИИ УГЛЕВОДОРОДОВ С ИСПОЛЬЗОВАНИЕМ СВЯЗАННОГО ЦЕОЛИТОМ ЦЕОЛИТНОГО КАТАЛИЗАТОРА | 1995 |
|
RU2177468C2 |
СПОСОБ ИЗОМЕРИЗАЦИИ Н-ПЕНТАНА | 1996 |
|
RU2136645C1 |
ДОЗАТОР ФЕРРОМАГНИТНЫХ КОМПОНЕНТОВ ШИХТЫ | 0 |
|
SU177046A1 |
US 4013732 A, 22.03.1977 | |||
US 4404416 A, 13.09.1983. |
Авторы
Даты
2004-01-10—Публикация
2002-07-12—Подача