ПИРОТЕХНИЧЕСКИЙ СОСТАВ Российский патент 2004 года по МПК C06B33/00 

Описание патента на изобретение RU2222520C2

Изобретение относится к области пиротехники и может быть использовано в нагревательных элементах в качестве источника тепла.

Пиротехнические составы применяются в качестве источников тепла для решения различных технических задач, например для нагрева деталей, в разогревных источниках тока (тепловых батареях), для разогрева консервов и т. д.

В ряде случаев при создании специальных технических средств нагревательные пиротехнические составы должны отвечать следующим требованиям:
- обладать достаточно высоким тепловыделением;
- быть безгазовыми (малогазовыми);
- образовывать при горении компактные шлаки, сохраняющие исходную форму пиротехнического элемента.

Помимо перечисленных характеристик пиротехнические составы должны быть безопасными как на стадии производства, так и при использовании, в частности, быть не чувствительными к механическим воздействиям, в особенности к трению.

Известен безгазовый пиротехнический состав /1/, включающий в себя в качестве окислителя перхлорат калия, а в качестве горючего смесь порошков титана и алюминия при следующем соотношении компонентов, мас.%:
Перхлорат калия - 6-8
Титан - 82-92
Алюминий - 2-10
Удельное тепловыделение данного состава 1465-2000 Дж/г, при горении выделяются газы 0,65-4,5 см3 и образуются компактные шлаки.

Недостатком данного состава является его очень высокая чувствительность к трению (1-2 класс опасности), что осложняет его практическое применение.

Известны безгазовые составы на основе циркония и таких окислителей, как оксиды свинца (PbO2, Рb3O4) /2/. Существенными недостатками данных составов являются образование жидких шлаков и очень высокая чувствительность к трению вследствие свойств порошков циркония и оксидов свинца.

Наиболее близким к заявляемому составу по технической сущности является пиротехнический состав /3/, содержащий в качестве окислителя триоксид вольфрама и в качестве горючего цирконий при следующем соотношении компонентов, мас.%:
Триоксид вольфрама - 61-65
Цирконий - 35-39
Состав обладает удельным тепловыделением 1590 Дж/г, является безгазовым (~12 см3/г), образует компактные шлаки (работоспособен при инерционных нагрузках) и предназначен для нагрева деталей.

Недостатком данного состава является его очень высокая чувствительность к трению (1-3 класс опасности), обусловленная свойствами порошка циркония.

Используемый в качестве горючего порошок циркония является чрезвычайно пирофорным материалом, способным воспламеняться даже при комнатной температуре (А.А. Шидловский. Основы пиротехники, М.: Машиностроение, 1973, с. 93).

Задачей предлагаемого технического решения является снижение чувствительности состава к трению при сохранении необходимого уровня удельного тепловыделения, а также низкого газовыделения и требуемого агрегатного состояния шлаков.

Технический результат, достигаемый при использовании изобретения, следующий:
- удельное тепловыделение 1500-2000 Дж/г;
- удельное газовыделение 3,5-9 см3/г;
- чувствительность к трению 6-14 класс опасности;
- компактные шлаки.

Поставленная задача и технический результат достигаются за счет того, что пиротехнический состав содержит в качестве окислителя триоксид вольфрама, в качестве горючего порошок титана и дополнительно содержит дисульфид молибдена (МоS2) при следующем соотношении компонентов, мас.%:
Триоксид вольфрама - 66-76
Порошок титана - 19-30
Дисульфид молибдена - 3-5
Как указывалось выше, используемый в прототипе в качестве горючего порошок циркония обладает чрезвычайно высокой пирофорностью, что требует специальных мер безопасности, а именно его увлажнения на всех стадиях производства, хранения и транспортирования.

Порошок титана не обладает такой пирофорностью, как порошок циркония, при этом энергия активации реакции порошков с кислородом воздуха составляет для циркония и титана ~150 кДж/моль и ~207 кДж/моль соответственно /4/.

Дисульфид молибдена по своей структуре весьма схож с графитом, а именно состоит из слоев атомов молибдена, расположенных между плотноупакованными слоями серы, что обуславливает его антифрикционные свойства, причем превосходящие графит /5/.

Экспериментально полученное соотношение компонентов позволяет достигнуть вышеуказанный технический результат (см. таблицу).

Сопоставительный анализ с прототипом позволяет сделать вывод о том, что заявленный пиротехнический состав соответствует критерию "Новизна".

Технический результат, установленный экспериментальным путем, и анализ известных пиротехнических составов не выявил составов, дающих такой же технический результат, что и заявляемый состав. Это позволяет сделать вывод о соответствии критерию "Изобретательский уровень".

Для экспериментальной отработки заявляемый состав изготавливался из порошков:
- триоксид вольфрама<100 мкм
- титан<40 мкм
- дисульфид молибдена<100 мкм.

Смешение компонентов осуществлялось в шаровом смесителе. Для определения характеристик горения использовались образцы со степенью уплотнения 0,7.

Калориметрирование осуществлялось по стандартной методике в инертной среде. Скорость горения определялась с помощью фотодиодной методики с регистрацией процесса горения на светолучевом осциллографе H117. Газовыделение состава определялось сжиганием образцов в установке, предварительно вакуумированной до остаточного давления ~10-2 мм рт.ст. Чувствительность состава к механическим воздействиям (трение, удар) определялась по ОСТЗ-6609-90 и ОСТ В 84-2447-90 соответственно. Результаты проведенных испытаний представлены в таблице.

Работоспособность состава (определение эффективности нагревательных элементов) производилась в специальных сборках. Многократно проведенные эксперименты показали высокую эффективность и надежность работы нагревательных элементов во всем диапазоне температур от минус 50oС до плюс 50oС, а также при инерционных нагрузках.

Наличие дисульфида молибдена в предлагаемом составе наряду с существенным снижением чувствительности к трению делает состав технологичным, что позволяет получать прессованные изделия высокого качества без сколов и выкрашиваний, а также исключает абразивное воздействие прессуемого материала на детали пресс-инструмента.

Литература
1. Патент России 2091359, кл. С 06 В 29/04, Бюл. 27, 1997.

2. А. А. Шидловский. Основы пиротехники. М.: Машиностроение, 1973, с. 274.

3. СССР. Авт. свид. 377315. Публ. БИ 18, 1973 г.

4. Е. В. Черненко, Н. И. Ваганова, Л.Ф. Афанасьева. Метод определения уровня пожароопасных тепловых воздействий на металлические порошки. РАН. Химическая физика процессов горения и взрыва. XII Симпозиум по горению и взрыву. Часть III, с. 56 (239), Черноголовка, 2000.

5. Химическая энциклопедия. Т3. БРЭ, М., 1992, с. 250.

Похожие патенты RU2222520C2

название год авторы номер документа
ЗАМЕДЛИТЕЛЬНЫЙ ПИРОТЕХНИЧЕСКИЙ СОСТАВ (ВАРИАНТЫ) 2005
  • Думенко Алексей Викторович
RU2291141C1
ЗАМЕДЛИТЕЛЬНЫЙ СОСТАВ (ВАРИАНТЫ) 2006
RU2332393C2
ПИРОТЕХНИЧЕСКИЙ СОСТАВ 2011
  • Малышев Александр Яковлевич
  • Постников Алексей Юрьевич
  • Лошкарёв Владимир Николаевич
  • Татынов Александр Алексеевич
  • Иванов Владимир Вячеславович
  • Кремзуков Иван Константинович
  • Климов Станислав Алексеевич
  • Кирюшкин Игорь Николаевич
  • Демидов Олег Сергеевич
  • Малышев Александр Степанович
RU2483050C2
ПИРОТЕХНИЧЕСКИЙ СОСТАВ 2005
  • Малышев Александр Степанович
  • Харламов Михаил Владимирович
  • Ярошенко Вячеслав Викторович
  • Малышев Александр Яковлевич
  • Кремзуков Иван Константинович
  • Игнатов Олег Леонидович
RU2297404C1
ПИРОТЕХНИЧЕСКИЙ ЗАМЕДЛИТЕЛЬНЫЙ СОСТАВ 2002
  • Кремзуков И.К.
  • Веденеев А.И.
  • Лашков В.Н.
  • Пелесков С.А.
  • Лобанов В.Н.
  • Малышев А.Я.
RU2225385C2
ГАЗООБРАЗУЮЩИЙ ПИРОТЕХНИЧЕСКИЙ СОСТАВ 1998
  • Харламов М.В.
RU2151759C1
ПИРОТЕХНИЧЕСКИЙ СОСТАВ 2013
  • Лошкарев Владимир Николаевич
  • Малышев Александр Яковлевич
  • Постников Алексей Юрьевич
  • Татынов Александр Алексеевич
  • Иванов Владимир Вячеславович
  • Иванов Дмитрий Геннадьевич
  • Грушко Александр Васильевич
  • Малышев Александр Степанович
  • Беляев Евгений Николаевич
RU2531293C1
ГАЗОГЕНЕРИРУЮЩИЙ ПИРОТЕХНИЧЕСКИЙ СОСТАВ 1993
  • Голубев В.А.
  • Усков А.А.
  • Харламов М.В.
RU2068831C1
СОСТАВ ДЛЯ ИЗГОТОВЛЕНИЯ ПИРОТЕХНИЧЕСКОГО ЭЛАСТИЧНОГО МАТЕРИАЛА (ВАРИАНТЫ) 2005
  • Постников Алексей Юрьевич
  • Леваков Евгений Васильевич
  • Татынов Александр Алексеевич
RU2306306C2
Экзотермический состав для нагревательного элемента 2019
  • Просянюк Вячеслав Васильевич
  • Суворов Иван Степанович
  • Зюзина Дарья Сергеевна
  • Бурдикова Татьяна Владимировна
  • Коробков Александр Михайлович
  • Белов Евгений Георгиевич
RU2717227C1

Иллюстрации к изобретению RU 2 222 520 C2

Реферат патента 2004 года ПИРОТЕХНИЧЕСКИЙ СОСТАВ

Изобретение относится к области пиротехники и может быть использовано в нагревательных элементах в качестве источника тепла. Предложенный пиротехнический состав содержит триоксид вольфрама, порошок титана и дисульфид молибдена. Изобретение направлено на создание пиротехнического состава с чувствительностью к трению 6-14, удельным тепловыделением 1500-2000 Дж/г и газовыделением 3,5-9 см3/г. 1 табл.

Формула изобретения RU 2 222 520 C2

Пиротехнический состав, содержащий в качестве окислителя триоксид вольфрама и в качестве горючего порошок металла, отличающийся тем, что в качестве порошка металла он содержит порошок титана и дополнительно дисульфид молибдена при следующем соотношении компонентов, мас.%:

Триоксид вольфрама 66-76

Порошок титана 19-30

Дисульфид молибдена 3-5

Документы, цитированные в отчете о поиске Патент 2004 года RU2222520C2

ТЕРМИТНАЯ СМЕСЬ 0
  • В. П. Сорокин, П. А. Воронов Е. В. Леваков
SU377315A1
US 4053337, 11.10.1977
БЫСТРОДЕЙСТВУЮЩИЙ НАГРЕВАТЕЛЬ И НАГРЕВАТЕЛЬНОЕ УСТРОЙСТВО 1989
  • Риоити Сузуки[Jp]
  • Сусуму Мизунума[Jp]
  • Хироюки Кондо[Jp]
RU2015460C1
DE 2937721, 10.04.1980
US 4432818, 21.02.1984.

RU 2 222 520 C2

Авторы

Ярошенко В.В.

Усков А.А.

Харламов М.В.

Малышев А.С.

Кремзуков И.К.

Федоров А.А.

Даты

2004-01-27Публикация

2001-12-24Подача