Изобретение относится к области пиротехники и может быть использовано в нагревательных элементах в качестве источника тепла.
Пиротехнические составы применяются в качестве источников тепла для решения различных технических задач, например для нагрева деталей, в разогревных источниках тока (тепловых батареях), для разогрева консервов и т. д.
В ряде случаев при создании специальных технических средств нагревательные пиротехнические составы должны отвечать следующим требованиям:
- обладать достаточно высоким тепловыделением;
- быть безгазовыми (малогазовыми);
- образовывать при горении компактные шлаки, сохраняющие исходную форму пиротехнического элемента.
Помимо перечисленных характеристик пиротехнические составы должны быть безопасными как на стадии производства, так и при использовании, в частности, быть не чувствительными к механическим воздействиям, в особенности к трению.
Известен безгазовый пиротехнический состав /1/, включающий в себя в качестве окислителя перхлорат калия, а в качестве горючего смесь порошков титана и алюминия при следующем соотношении компонентов, мас.%:
Перхлорат калия - 6-8
Титан - 82-92
Алюминий - 2-10
Удельное тепловыделение данного состава 1465-2000 Дж/г, при горении выделяются газы 0,65-4,5 см3 и образуются компактные шлаки.
Недостатком данного состава является его очень высокая чувствительность к трению (1-2 класс опасности), что осложняет его практическое применение.
Известны безгазовые составы на основе циркония и таких окислителей, как оксиды свинца (PbO2, Рb3O4) /2/. Существенными недостатками данных составов являются образование жидких шлаков и очень высокая чувствительность к трению вследствие свойств порошков циркония и оксидов свинца.
Наиболее близким к заявляемому составу по технической сущности является пиротехнический состав /3/, содержащий в качестве окислителя триоксид вольфрама и в качестве горючего цирконий при следующем соотношении компонентов, мас.%:
Триоксид вольфрама - 61-65
Цирконий - 35-39
Состав обладает удельным тепловыделением 1590 Дж/г, является безгазовым (~12 см3/г), образует компактные шлаки (работоспособен при инерционных нагрузках) и предназначен для нагрева деталей.
Недостатком данного состава является его очень высокая чувствительность к трению (1-3 класс опасности), обусловленная свойствами порошка циркония.
Используемый в качестве горючего порошок циркония является чрезвычайно пирофорным материалом, способным воспламеняться даже при комнатной температуре (А.А. Шидловский. Основы пиротехники, М.: Машиностроение, 1973, с. 93).
Задачей предлагаемого технического решения является снижение чувствительности состава к трению при сохранении необходимого уровня удельного тепловыделения, а также низкого газовыделения и требуемого агрегатного состояния шлаков.
Технический результат, достигаемый при использовании изобретения, следующий:
- удельное тепловыделение 1500-2000 Дж/г;
- удельное газовыделение 3,5-9 см3/г;
- чувствительность к трению 6-14 класс опасности;
- компактные шлаки.
Поставленная задача и технический результат достигаются за счет того, что пиротехнический состав содержит в качестве окислителя триоксид вольфрама, в качестве горючего порошок титана и дополнительно содержит дисульфид молибдена (МоS2) при следующем соотношении компонентов, мас.%:
Триоксид вольфрама - 66-76
Порошок титана - 19-30
Дисульфид молибдена - 3-5
Как указывалось выше, используемый в прототипе в качестве горючего порошок циркония обладает чрезвычайно высокой пирофорностью, что требует специальных мер безопасности, а именно его увлажнения на всех стадиях производства, хранения и транспортирования.
Порошок титана не обладает такой пирофорностью, как порошок циркония, при этом энергия активации реакции порошков с кислородом воздуха составляет для циркония и титана ~150 кДж/моль и ~207 кДж/моль соответственно /4/.
Дисульфид молибдена по своей структуре весьма схож с графитом, а именно состоит из слоев атомов молибдена, расположенных между плотноупакованными слоями серы, что обуславливает его антифрикционные свойства, причем превосходящие графит /5/.
Экспериментально полученное соотношение компонентов позволяет достигнуть вышеуказанный технический результат (см. таблицу).
Сопоставительный анализ с прототипом позволяет сделать вывод о том, что заявленный пиротехнический состав соответствует критерию "Новизна".
Технический результат, установленный экспериментальным путем, и анализ известных пиротехнических составов не выявил составов, дающих такой же технический результат, что и заявляемый состав. Это позволяет сделать вывод о соответствии критерию "Изобретательский уровень".
Для экспериментальной отработки заявляемый состав изготавливался из порошков:
- триоксид вольфрама<100 мкм
- титан<40 мкм
- дисульфид молибдена<100 мкм.
Смешение компонентов осуществлялось в шаровом смесителе. Для определения характеристик горения использовались образцы со степенью уплотнения 0,7.
Калориметрирование осуществлялось по стандартной методике в инертной среде. Скорость горения определялась с помощью фотодиодной методики с регистрацией процесса горения на светолучевом осциллографе H117. Газовыделение состава определялось сжиганием образцов в установке, предварительно вакуумированной до остаточного давления ~10-2 мм рт.ст. Чувствительность состава к механическим воздействиям (трение, удар) определялась по ОСТЗ-6609-90 и ОСТ В 84-2447-90 соответственно. Результаты проведенных испытаний представлены в таблице.
Работоспособность состава (определение эффективности нагревательных элементов) производилась в специальных сборках. Многократно проведенные эксперименты показали высокую эффективность и надежность работы нагревательных элементов во всем диапазоне температур от минус 50oС до плюс 50oС, а также при инерционных нагрузках.
Наличие дисульфида молибдена в предлагаемом составе наряду с существенным снижением чувствительности к трению делает состав технологичным, что позволяет получать прессованные изделия высокого качества без сколов и выкрашиваний, а также исключает абразивное воздействие прессуемого материала на детали пресс-инструмента.
Литература
1. Патент России 2091359, кл. С 06 В 29/04, Бюл. 27, 1997.
2. А. А. Шидловский. Основы пиротехники. М.: Машиностроение, 1973, с. 274.
3. СССР. Авт. свид. 377315. Публ. БИ 18, 1973 г.
4. Е. В. Черненко, Н. И. Ваганова, Л.Ф. Афанасьева. Метод определения уровня пожароопасных тепловых воздействий на металлические порошки. РАН. Химическая физика процессов горения и взрыва. XII Симпозиум по горению и взрыву. Часть III, с. 56 (239), Черноголовка, 2000.
5. Химическая энциклопедия. Т3. БРЭ, М., 1992, с. 250.
название | год | авторы | номер документа |
---|---|---|---|
ЗАМЕДЛИТЕЛЬНЫЙ ПИРОТЕХНИЧЕСКИЙ СОСТАВ (ВАРИАНТЫ) | 2005 |
|
RU2291141C1 |
ЗАМЕДЛИТЕЛЬНЫЙ СОСТАВ (ВАРИАНТЫ) | 2006 |
|
RU2332393C2 |
ПИРОТЕХНИЧЕСКИЙ СОСТАВ | 2011 |
|
RU2483050C2 |
ПИРОТЕХНИЧЕСКИЙ СОСТАВ | 2005 |
|
RU2297404C1 |
ПИРОТЕХНИЧЕСКИЙ ЗАМЕДЛИТЕЛЬНЫЙ СОСТАВ | 2002 |
|
RU2225385C2 |
ГАЗООБРАЗУЮЩИЙ ПИРОТЕХНИЧЕСКИЙ СОСТАВ | 1998 |
|
RU2151759C1 |
ПИРОТЕХНИЧЕСКИЙ СОСТАВ | 2013 |
|
RU2531293C1 |
ГАЗОГЕНЕРИРУЮЩИЙ ПИРОТЕХНИЧЕСКИЙ СОСТАВ | 1993 |
|
RU2068831C1 |
СОСТАВ ДЛЯ ИЗГОТОВЛЕНИЯ ПИРОТЕХНИЧЕСКОГО ЭЛАСТИЧНОГО МАТЕРИАЛА (ВАРИАНТЫ) | 2005 |
|
RU2306306C2 |
Экзотермический состав для нагревательного элемента | 2019 |
|
RU2717227C1 |
Изобретение относится к области пиротехники и может быть использовано в нагревательных элементах в качестве источника тепла. Предложенный пиротехнический состав содержит триоксид вольфрама, порошок титана и дисульфид молибдена. Изобретение направлено на создание пиротехнического состава с чувствительностью к трению 6-14, удельным тепловыделением 1500-2000 Дж/г и газовыделением 3,5-9 см3/г. 1 табл.
Пиротехнический состав, содержащий в качестве окислителя триоксид вольфрама и в качестве горючего порошок металла, отличающийся тем, что в качестве порошка металла он содержит порошок титана и дополнительно дисульфид молибдена при следующем соотношении компонентов, мас.%:
Триоксид вольфрама 66-76
Порошок титана 19-30
Дисульфид молибдена 3-5
ТЕРМИТНАЯ СМЕСЬ | 0 |
|
SU377315A1 |
US 4053337, 11.10.1977 | |||
БЫСТРОДЕЙСТВУЮЩИЙ НАГРЕВАТЕЛЬ И НАГРЕВАТЕЛЬНОЕ УСТРОЙСТВО | 1989 |
|
RU2015460C1 |
DE 2937721, 10.04.1980 | |||
US 4432818, 21.02.1984. |
Авторы
Даты
2004-01-27—Публикация
2001-12-24—Подача