СПЛАВ НА ОСНОВЕ МЕДИ Российский патент 2004 года по МПК C22C9/06 

Описание патента на изобретение RU2224039C2

Изобретение относится к металлургии, в частности, к сплавам на основе меди. Медные сплавы находят применение для изготовления электродов контактной сварки, шин электросоединителей, контакторов для передачи электрического тока, в частности скользящих контактов, и т.п., то есть в тех отраслях техники, где используется высокая электропроводность меди, равная 58 м/Ом•мм2 (удельное сопротивление при нормальных условиях 1,72 мкОм/см). Основным недостатком меди, ограничивающим ее применение, являются сравнительно низкие прочностные характеристики, для повышения которых вводят легирующие добавки.

Известен низколегированный сплав на основе меди, включающий 0,4-1,0 мас. % хрома и 0,02-0,1 мас.% циркония (бронза хромоциркониевая). Указанный сплав имеет электропроводность 49 м/Ом•мм2 и удельное сопротивление 2,04 мкОм/см, однако предел прочности при удлинении не превышает 50 кгс/мм2 [Николаев А.К. , Розенберг В.М. Сплавы для электродов контактной сварки. М., "Металлургия", 1978, с. 24, 92].

Наиболее близким по совокупности существенных признаков к заявляемому сплаву является сплав на основе меди, содержащий 2,2-2,8 мас.% никеля, 0,4-0,8 мас.% кремния и 0,5-1% мас. хрома.

Этот сплав имеет более высокий уровень прочности (предел прочности при удлинении составляет 80 кгс/мм2), но указанные легирующие добавки повышают удельное сопротивление сплава до 3,72 мкОм/см и снижают его электропроводность до 27 м/Ом•мм2 [Николаев А.К. и др. Хромовые бронзы. М., "Металлургия", 1983, с. 167-169].

Технический результат, достигаемый в заявляемом изобретении, состоит в повышении электропроводности сплава при одновременном достижении его высоких физико-механических характеристик.

Указанный результат достигается тем, что сплав на основе меди, содержащей никель, кремний и хром, дополнительно содержит нанодисперсный фуллероидный материал, а также цирконий и магний, причем компоненты взяты в следующем соотношении, мас.%:
Никель - 2,2 -2,8
Кремний - 0,5-0,9
Хром - 0,4-1,0
Цирконий - 0,05-0,25
Магний - 0,05-0,25
Нанодисперсный фуллероидный материал - 0,0001-0,5
Медь - Остальное
В качестве нанодисперсного фуллероидного материала сплав содержит многослойные углеродные нанотрубки или многослойные полиэдральные наночастицы фуллероидного типа.

Многослойные углеродные нанотрубки получены так, как это описано в [Ymamura М. et. al. Japan J. Appl. Phys., 1994, v 33(2), L 1016].

Многослойные полиэдральные наночастицы фуллероидного типа получены нами путем термического распыления графитового анода в плазме дугового разряда в атмосфере инертного газа с осаждением продуктов распыления на катоде и переработки катодного осадка. Переработка включает измельчение осадка и окисление его в газовой фазе и затем в жидкой фазе в расплаве гидроксидов, галогенидов или нитратов, щелочных металлов или их смесей.

Многослойные полиэдральные углеродные наноструктуры фуллероидного типа с межслоевым расстоянием 0,34-0,36 нм, средним размером частиц 60-200 нм, насыпной плотностью 0,6-0,8 г/см3, пикнометрической плотностью 2,2±0,1 г/см3, показателем термобароустойчивости к графитизации при 3000oС не менее 50 КБар, рентгенографическим показателем графитизации 0,01-0,02, удельным электрическим сопротивлением при давлении 120 МПа не более 2,5•10-4 Ом•м.

Для легирования заявляемого сплава нанодисперсным фуллероидным материалом были изготовлены таблетки массой 200 г, содержащие от 0,005 до 10 г нанотрубок или полиэдральных частиц. Для этого порошковую медь марки ПМС-1 смешивали с нанодисперсным фуллероидным материалом, формировали таблетку, обжигали ее в токе водорода и прессовали до плотности 8 г/см3 и более.

Таблетку (или несколько таблеток) опускали в расплав меди, содержащий металлические легирующие добавки, при температуре около 1200oС. Составы полученных сплавов приведены в таблице 1.

Были определены физико-механические показатели заявляемого сплава, а также удельное сопротивление и электропроводность при нормальных условиях (20oС), а также при температуре (-196oС) и (+700oС). Для сравнения те же показатели определены для сплава 7к, не содержащего нанодисперсного фуллероидного материала. Данные испытаний приведены в таблице 2.

Как видно из приведенных данных испытаний, заявляемый сплав при сравнительно низком удельном сопротивлении (высокой электропроводности) имеет высокие показатели физико-механический свойств, особенно прочности на сжатие, эластичности (относительное удлинение) и ударопрочности, что позволяет расширить область его применения.

Похожие патенты RU2224039C2

название год авторы номер документа
ПОЛИЭДРАЛЬНЫЕ МНОГОСЛОЙНЫЕ УГЛЕРОДНЫЕ НАНОСТРУКТУРЫ ФУЛЛЕРОИДНОГО ТИПА 2000
  • Пономарев А.Н.
  • Никитин В.А.
RU2196731C2
СПЕЧЕННЫЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ 2003
  • Пономарев Андрей Николаевич
  • Никитин Владимир Александрович
  • Паутов Алексей Иванович
  • Калинин Юрий Григорьевич
  • Заборский Борис Николаевич
RU2281341C2
ТОКОПРОВОДЯЩАЯ АРМАТУРА КОНТАКТНОЙ СЕТИ ЭЛЕКТРИФИЦИРОВАННЫХ ЖЕЛЕЗНЫХ ДОРОГ И СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ 2013
  • Буталов Сергей Леонидович
  • Бухаров Виктор Александрович
  • Беляев Николай Владимирович
RU2529086C1
МЕТАЛЛОПОРИСТЫЙ КАТОД И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2017
  • Крачковская Татьяна Михайловна
  • Сахаджи Георгий Владиславович
  • Сторублев Антон Вячеславович
  • Пономарев Андрей Николаевич
RU2658646C1
НЕЛИНЕЙНО-ОПТИЧЕСКИЙ ЭЛЕМЕНТ ДЛЯ ОГРАНИЧЕНИЯ ПОТОКОВ ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ 2001
  • Белоусов В.П.
  • Белоусова И.М.
  • Данилов О.Б.
  • Григорьев В.А.
  • Никитин В.А.
  • Муравьева Т.Д.
  • Скобелев А.Г.
  • Косицкий Д.В.
  • Пономарев А.Н.
  • Туляков О.С.
RU2238577C2
НАНОКОМПОЗИТНЫЙ МАТЕРИАЛ НА ОСНОВЕ МИНЕРАЛЬНЫХ ВЯЖУЩИХ 2013
  • Пономарев Андрей Николаевич
  • Гуськов Владимир Дмитриевич
  • Воронцов Владимир Владимирович
  • Агеев Илья Владимирович
RU2538410C1
Способ получения нанокомпозиционного материала на основе меди, упрочненного углеродными нановолокнами 2018
  • Толочко Олег Викторович
  • Кольцова Татьяна Сергеевна
  • Ларионова Татьяна Васильевна
  • Бобрынина Елизавета Викторовна
RU2696113C1
АНТИФРИКЦИОННЫЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ 2002
  • Бланк Е.Д.
  • Виноградов С.Е.
  • Герцык М.А.
  • Никитин В.А.
  • Орыщенко А.С.
  • Петров В.М.
  • Пономарев А.Н.
  • Рыбин В.В.
  • Слепнев В.Н.
  • Чистяков В.В.
  • Шекалов В.И.
RU2237685C2
ТАМПОНАЖНЫЙ СОСТАВ 2023
  • Нуцкова Мария Владимировна
  • Алхаззаа Мохаммад
RU2810354C1
АНТИФРИКЦИОННАЯ КОМПОЗИЦИЯ 2000
  • Рыбин В.В.
  • Пономарев А.Н.
  • Николаев Г.И.
  • Абозин И.Ю.
  • Бахарева В.Е.
  • Малинок М.В.
  • Никитин В.А.
  • Петров В.М.
RU2188834C2

Иллюстрации к изобретению RU 2 224 039 C2

Реферат патента 2004 года СПЛАВ НА ОСНОВЕ МЕДИ

Изобретение относится к металлургии, в частности к сплавам на основе меди. Предложен сплав на основе меди, содержащий никель 2,2-2,8; кремний 0,5-0,9; хром 0,4-1,0; цирконий 0,05-0,25; магний 0,05-0,25; нанодисперсный фуллероидный материал 0,0001-0,5; медь остальное. В качестве нанодисперсного фуллероидного материала используются многослойные углеродные нанотрубки или многослойные полиэдральные наночастицы фуллероидного типа. Техническим результатом является повышение электропроводности сплава при одновременном достижении его высоких физико-механических характеристик. 2 з.п. ф-лы, 2 табл.

Формула изобретения RU 2 224 039 C2

1. Сплав на основе меди, включающий никель, хром и кремний, отличающийся тем, что он дополнительно содержит нанодисперсный фуллероидный материал, а также цирконий и магний при следующем соотношении компонентов, маc.%:

Никель 2,2-2,8

Кремний 0,5-0,9

Хром 0,4-1,0

Цирконий 0,05-0,25

Магний 0,05-0,25

Нанодисперсный фуллероидный материал 0,0001-0,5

Медь Остальное

2. Сплав по п.1, отличающийся тем, что в качестве нанодисперсного фуллероидного материала он содержит многослойные углеродные нанотрубки.3. Сплав по п.1, отличающийся тем, что в качестве нанодисперсного фуллероидного материала он содержит многослойные полиэдральные наночастицы фуллероидного типа.

Документы, цитированные в отчете о поиске Патент 2004 года RU2224039C2

Многоканальное аналоговое запоминающее устройство (его варианты) 1983
  • Петухов Андрей Евгеньевич
  • Шаромет Олег Николаевич
SU1223306A1
СПЛАВ НА ОСНОВЕ МЕДИ 1992
  • Щепочкина Юлия Алексеевна
RU2012619C1
СПЕЧЕННЫЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ 1994
  • Оганян Р.А.
  • Жариков О.В.
  • Оганян Я.Н.
  • Осипьян Ю.А.
RU2087575C1
US 4591484, 27.05.1987
US 4656003, 07.04.1987.

RU 2 224 039 C2

Авторы

Пономарев Н.А.

Пономарев А.Н.

Никитин В.А.

Чистяков В.В.

Паутов А.И.

Николаев А.К.

Краснов И.В.

Митрофанов И.В.

Нефедов А.Н.

Соломонов М.Ю.

Даты

2004-02-20Публикация

2001-12-14Подача